# MICROSOFT BASIC-80 

Revision 5.0

## REFERENCE MANUAL

Revision A January 1, 1980

Copyright 1980 Vector Graphic Inc. Copyright 1979 Microsott

## Copyright 1980 by Vector Graphic Inc.

 All rights reserved.
## Disclaimer

Vector Graphic makes no representations or warranties with respect to the contents of this manual itself, whether or not the product it describes is covered by a warranty or repair agreement. Further, Vector Graphic reserves the right to revise this publication and to make changes from time to time in the content hereof without obligation of Vector Graphic to notify any person of such revision or changes, except when an agreement to the contrary exists.

## Revisions

The date and revision of each page herein appears at the bottom of each page. The revision letter such as $A$ or $B$ changes if the manual has been improved but the product itself has not been significantly modified. The Date and revision on the Title Page corresponds to that of the page most recently revised. When the product itself is modified significantly, the product will get a new revision number, as shown on the manual's title page. and the manual will revert to revision $A$, as if it were treating a brand new product. EACH MANUAL SHOULD ONLY BE USED WITH THE PRODUCT IDENTIFIED ON THE TITLE PAGE.

## FOREWORD

Audience $\quad$ This manual is intended for computer suppliers, or others with at least a moderate technical knowledge of small computers and computer programming, and the basic operation of the Vector Graphic computer to be used

Scope This manual will describe the features, commands, and syntax of Microsoft BASIC80, Revision 5.0, and explain how it is used on a Vector Graphic computer that uses $\mathrm{CP} / \mathrm{M}$ as its operating system. Though it covers every aspect of the language, it is not intended as a training manual for novice programmers.

Organization
Chapter 1 discusses BASIC-80 generally. Chapter 2 contains the syntax and use of every command and statement in BASIC-80, in alphabetic order. Chapter 3 describes every intrinsic function in BASIC 80, also alphabetically. In the appendices, certain topics such as disk I/O, using assembly language subroutines, the relationship to $C P / M$, and the compatibility with the BASIC compiler, are discussed in greater detail, and there are lists of error messages, ASCll codes, math functions, new features in Revision 5.0, and some tips on converting from other BASIC's.

## PERSPECTIVE

This is the reference manual for Vector Graphic's implementation of Microsoft's BASIC-80, Revision 5.0, one of the most extensive and high-speed BASICs available. It meets the ANSI qualifications for BASIC, as set forth in document BSRX 3.60-1978. Vector Graphic is proud to offer the BASIC-80 interpreter with Vector Graphic systems.

For readers familiar with earlier versions of Microsoft BASIC, Appendix A describes the enhancements in Revision 5.0 over earlier releases, including incompatibilities with them. If you have software written in one of the earlier versions, check Appendix A for new features that may affect execution.

This manual covers a number of upward compatible versions of BASIC-80, specifically the " 8 K ," "Extended," and "Disk" versions. Any feature in the 8K and Extended versions is available in the Disk version. The version available from Vector Graphic is the Disk version. Therefore, everything described in this manual is present in the Vector Graphic implementation, no matter what version it is listed under.

Most users will make use of the BASIC-80 interpreter. (The interpreter is a program which allows entry and editing of BASIC programs, and execules them line by line whenever desired.) For certain specialized applications, the Microsoft BASIC compiter (BASCOM) is also available through Vector Graphic. The compiler allows you io convert a BASIC-80 program, originally writien and debugged using the interpreter, into machine language, which can then be executed at very high speed. When you obtain the compiler, you will receive a manual detailing its use, but because it may be relevant to a user of the BASIC-80 interpreter, Appendix $L$ discusses the BASIC compiler in brief. Note that Appendix L lists several features which are present in the interpreter but which are absent or different in the compiler. Programmers intending to compile BASIC-80 programs musi pay attention to these differences.

In a Vector Graphic computer, BASIC-80 runs in conjunction with the CP/M operating sysiem. The name of the $\checkmark$ BASIC-80 interpreter file on the disk supplied by Vector Graphic is "MBASIC.COM." Therefore, in order to call up the interpreter from the CP/M executive, do the following: First, if MBASIC is not already present on the main CP/M diskette, mount the BASIC-80 disk in drive A. Then, following the A>prompt. type MBASIC and then press the RETURN key. Optionally, you can enter one or more parameters before depressing RETURN, including the name of the BASIC program you want to execute, the number of files you want OPEN at one time, and the highest memory location you want BASIC to use. These options are discussed in Appendix D. In this manual, the term "initialization" means the above process of calling up BASIC-80, nothing more.

Of particular interest is the option to immediately execute a BASIC program by typing its name as a parameter following the word MBASIC. This causes the program to be loaded, and then executed as if a RUN command were typed. In other words, the system jumps directly into the application program when MBASIC is called up. Further, if you are using $C P / M 2$, rather than an earlier version of $C P / M$, you can configure your system diskette to bypass the CP/M executive and instead carry out a particular CP/M command or utility, such as calling up MBASIC. You accomplish this by creating an "auto" command, which you do by running the CONFIG utility present on the CP/M 2 serialized diskette. If your auto command contains "MBASIC" followed by the name of a BASIC prograp on the same disketto. optionally followed by other parameters, followed by a RETURN, then when you boot up the system, it will bypass all executives and automatically begin executing the BASIC program. (This assumes MBASIC.COM and the BASIC program are on the system diskette along with CP/M.) This allows creation of an attractive "turn-key" package.

Appendix D explains several other commands and aspects of BASIC-80 that deal specifically with CP/M. Use it as an integral part of this manual.

Please note the following points when using this manual:
It is NOT necessary to create a file under the CP/M executive before it can be used by BASIC-80.

To return to the CP/M executive from the BASIC-80 executive, type SYSTEM followed by the RETURN key.
When using a Vector System B, Memorite II, Vector 3030, or other Vector Graphic system having "memory mapped video" and using the option EV Extended Systems Monitor, do NOT press the LF or LINEFEED key in order to continue BASIC line on a second line on the screen. Instead, the video driver will cause the text to "wrap around" automatically. The same is true for any serial terminal that has automatic wrap around.

When listing program text or output, BASIC-80 assumes it is outputting to a 132-character width printer. If your system's printer is narrower, it will be able to print long lines only if the printer or the printer driver software in the operating system has the ability to automatically wrap around at the end of a line. This is dependent on the particular printer you are using.

References to "printing" in this manual, as in most BASIC manuals, refer to displaying text on the operator's console, which is usually a video screen. The term "printing" derives from the original use of Teletype and other hard-copy printing terminals. The manual will refer specifically to the "line printer" when referring to output intended for the system's output printer, (sometimes called the "lister"), which is usually a separate peripheral from the operator's console. Output directed by BASIC-80 to the "line printer" is sent by BASIC-80 to CP/M's logical lister output routine, which normally sends the data out via a channel connected electronically to a printer of some kind. The two commands that cause BASIC-80 to send data in this way to the "line printer" are LLIST and LPRINT.

Reference is made in several places to the console's bell. This is only relevant if the terminal you are using has a bell. The Vector Graphic memory-mapped video console at this time has no bell.

## TABLE OF CONTENTS

Section Page

1. General Information About BASIC-80 ..... 1
II. BASIC-80 Commands and Statements ..... 12
III. BASIC-80 Functions ..... 53
Appendix A New Features in BASIC-80, Release 5.0/5.1 ..... 68
Appendix B. BASIC-80 Disk I/O ..... 69
Appendix C. Assembly Language Subroutines ..... 77
Appendix D. BASIC-80 with the CP/M Operating System ..... 82
(Appendices E through H do not exist.)
Appendix I. Converting Programs to BASIC-80 ..... 85
Appendix J. Summary of Error Codes and Error Messages ..... 86
Appendix K. Mathematical Functions ..... 90
Appendix L. Microsoft BASIC Compiler ..... 91
Appendix M. ASCII Character Codes ..... 94
Index ..... 95

## CHAPTER 1

## GENERAL INFORMATION ABOUT BASIC-80

### 1.1 INITIALIZATION

The procedure for initialization will vary with different implementations of BASIC-80. Check the appropriate appendix at the back of this manual to determine how BASIC-80 is initialized with your operating system.

### 1.2 MODES OF OPERATION

When BASIC-80 is initialized, it types the prompt "Ok". OKk' means BASIC-80 is at command level, that is, it is ready to accept commands. At this point, BASIC-80 may be used in either of two modes: the direct mode or the indirect mode.

In the direct mode, BASIC commands and statements are not preceded by line numbers. They are executed as they are entered. Results of arithmetic and logical operations may be displayed immediately and stored for later use, but the instructions themselves are lost after execution. This mode is useful for debugging and for using BASIC as a "calculator" for quick computations that do not require a complete program.

The indirect mode is the mode used for entering programs. Program lines are preceded by line numbers and are stored in memory. The program stored in memory is executed by entering the RUN command.

### 1.3 LINE FORMAT

Program lines in a BASIC program have the following format (square brackets indicate optional):

> nnnnn BASIC statement [:BASIC statement . . .] <carriage return>

At the programmer's option, more than one BASIC statement may be placed on a line, but each statement on a line must be separated from the last by a colon.

A BASIC program line always begins with a line number, ends with a carriage return, and may contain a maximum of:

72 characters in 8K BASIC-80
255 characters in Extended and Disk BASIC-80.
In Extended and Disk versions, it is possible to extend a logical line over more than one physical line by use of the terminal's <line feed>key. <Line feed> lets you continue typing a logical line on the next physical line without entering a <carriage return>. (In the 8 K version, <line feed> has no effect.

### 1.3.1 Line Numbers

Every BASIC program line begins with a line number. Line numbers indicate the order in which the program lines are stored in memory and are also used as references when branching and editing. Line numbers must be in the range 0 to 65529. In the Extended and Disk versions, a period (.) may be used in EDIT, LIST, AUTO and DELETE commands to refer to the current line.

### 1.4 CHARACTER SET

The BASIC-80 character set is comprised of alphabetic characters, numeric characters and special characters.
The alphabetic characters in BASIC-80 are the upper case and lower case letters of the alphabet.
The numeric characters in BASIC-80 are the digits 0 through 9.
The following special characters and terminal keys are recognized by BASIC-80:

| Character ; $=$ + $=$ 1 | Name <br> Blank <br> Semicolon <br> Equal sign or assignment symbol <br> Plus sign <br> Minus sign <br> Asterisk or multiplication symbol <br> Slash_or division symbol |
| :---: | :---: |
| $1$ | Uo arrow or exponentiation symbol |
| $1$ | Left parenthesis |
| ) | Right parenthesis |
| \% | Percent |
| 产 | Number (or pound) sign |
| \$ | Dollar sign |
| $!$ | Exclamation point |
| [ | Left bracket |
| ] | Right bracket |
| , | Comma |
| . | Period or decimal point |
| ; | Single quotation mark (apostrophe) |
| : | Colon |
| \& | Ampersand |
| ? | Question mark |
| $<$ | Less than |
| $>$ | Greaier than |
| 1 | Backslash or integer division symbol |
| @ | At-sign |
|  | Underscore |
| <delete> | Deletes last character typed. |
| <escape> | Escapes Edit Mode subcommands. |
|  | See Section 2.16 |
| <tab> | Moves print position to next tab stop. |
| <line feed> | Moves to next physical line. |
| <carriage return> | Terminates input of a line. |
| <backspace> | Deletes last character typed, and erases it from screen. |

### 1.4.1 Control Characters

The following control characters are in BASIC-80:

## Control P: $\equiv P K$

Control-A Enters Edit Mode on the line being typed.
Control-C Interrupts program execution and returns to BASIC-80 command level.
Control-G Rings the bell at the terminal.
Control-H Backspace. Deletes the last character typed.
Control-I Tab. Tab stops are every eight columns.
Control-0 Halts program output while execution continues. A second Control-O restarts output.
Control-R Retypes the line that is currently being typed.
ControlS Suspends program execution.
Control-Q Resumes program execution after a Control-S.
Control-U
Deletes the line that is currently being typed.

### 1.5 CONSTANTS

Constants are the actual values BASIC uses during execution. There are two types of constants: string and numeric.

A string constant is a sequence of up to 255 alphanumeric characters enclosed in double quotation marks. Examples of string constants:

```
"HELLO"
"$25,000.00"
"Number of Employees"
```

Numeric constants are positive or negative numbers. Numeric constants in BASIC cannot contain commas. There are five types of numeric constants:

1. Integer constants
2. Fixed Point constants
3. Floating Point constants

Whole numbers between -32768 and +32767 . Integer constants do not have decimal points.

Positive or negative real numbers, ie., numbers that contain decimal points.

Positive or negative numbers represented in exponential form (similar to scientific notation). A floating point constant consists of an optionally signed integer or fixed point number (the mantissa) followed by the letter $E$ and an optionally signed integer (the exponent). The exponent must be in the range -38 to +38 .
Examples:
$235.988 \mathrm{E}-7=.0000235988$
$2359 E 6=2359000000$
(Double precision floating point constants use the letter D instead of E. See Section 1.5.1.)
Hexadecimal numbers with the prefix \&H. Examples:
\& $\mathrm{H}^{2} 76$ \& H32F

Octal numbers with the prefix $\& 0$ or $\&$. Examples:
\&0347
\& 1234

### 1.5.1 Single and Double Precision Form For Numeric Constants

In the $8 K$ version of BASIC-80, all numeric constants are single precision numbers. They are stored with 7 digits of precision, and printed with up to 6 digits.

In the Extended and Disk versions, however, numeric constants may be either single precision or double precision numbers. With double precision, the numbers are stored with 16 digits of precision, and printed with up to 16 digits.

Double precision sequential input from disk files reads number to full double precision accuracy if the number is less than 7 digits long (i.e., 0.01).

A single precision constant is any numeric constant that has:

1. seven or fewer digits, or
2. exponential form using $E$, or
3. a trailing exclamation point (!)

A double precision constant is any numeric constant that has:

1. eight or more digits, or
2. exponential form using $D$. or
3. a trailing number sign (\#)

Examples:

| Single Precision Constants | Double Precision Constants |
| :---: | :---: |
| 46.8 | 345692811 |
| $-7.09 E-06$ | $-1.09432 \mathrm{D}-06$ |
| 3489.0 | $3489.0 \#$ |
| $22.5!$ | 7654321.1234 |

### 1.6 VARIABLES

Variables are names used to represent values that are used in a BASIC program. The value of a variable may be assigned explicitly by the programmer, or it may be assigned as the result of calculations in the program. Before a variable is assigned a value, its value is assumed to be zero.

### 1.6.1 Variable Names And Declaration Characters

BASIC-80 variable names may be any length, however, in the 8 K version, only the first two characters are significant. In the Extended and Disk versions, up to 40 characters are significant. The characters allowed in a variable name are letters and numbers, and the decimal point is allowed in Extended and Disk variable names. The first character must be a letter. Special type declaration characters are also allowed-see below.

A variable name may not be a reserved word. The Extended and Disk versions allow embedded reserved words: the 8 K version does not. If a variable begins with FN , it is assumed to be a call to a user-defined function. Reserved words include all BA.SIC-80 commands, statements, function names and operator names. Variables may be expressed in upper or lower case and will not be converted to upper case.

Variables may represent either a numeric value or a string. String variable names are written with a dollar sign (\$) as the last character. For example: A\$ = "SALES REPORT". The dollar sign is a variable type declaration character, that is, it "declares" that the variable will represent a string.

In the Extended and Disk versions, numeric variable names may declare integer, single or double precision values. (All numeric values in 8 K are single precision.) The type declaration characters for these variable names are as follows:

| \% | Integer variable |
| :--- | :--- |
| $!$ | Single precision variable |
| \# | Double precision variable |

The default type for a numeric variable name is single precision.
Examples of BASIC-80 variable names follow.
In Extended and Disk versions:

| PI\# | declares a double precision value |
| :--- | :--- |
| MINIMUM! | declares a single precision value |
| LIMIT\% | declares an integer value |

In 8K, Extended and Disk versions:

```
N$ declares a string value
ABC represents a single precision value
```

In the Extended and Disk versions of BASIC-80, there is a second method by which variable types may be declared. The BASIC-80 statements DEFINT, DEFSTR, DEFSNG and DEFDBL may be included in a program to declare the types for certain variable names. These statements are described in detail in Section 2.12.

### 1.6.2 Array Variables

An array is a group or table of values referenced by the same variable name. Each element in an array is referenced by an array variable that is subscripted with integers or integer expressions. An array variable name has as many subscripts as there are dimensions in the array. For example $\mathrm{V}(10)$ would reference a value in a one-dimensional array, $T(1,4)$ would reference a value in a two-dimensional array, and so on.

### 1.7 TYPE CONVERSION

When necessary. BASIC will convert a numeric constant from one type to another. The following rules and examples should be kept in mind.

1. If a numeric constant of one type is set equal to a numeric variable of a different type, the number will be stored as the type declared in the variable name. (If a string variable is set equal to a numeric value or vice versa, a "Type mismatch" error occurs.)
Example:
$10 \mathrm{~A} \%=23.42$
20 PRINT A\%
RUN
23
2. During expression evaluation, all of the operands in an arithmetic or relational operation are converted to the same degree of precision, i.e. that of the most precise operand. Also, the resuli of an arithmetic operation is returned to this degree of precision.

## Examples:

```
10 D# = 6#/7
20 PRINT D#
RUN
    .8571428571428571
10D=6#/7
20 PRINT D *
RUN
    .857143
The arithmetic was performed in double precision and the result was returned in D\# as a double precision value.
The arithmetic was performed in double precision and the result was returned to \(D\) (single precision variable), rounded and printed as a single precision value.
```

3. Logical operators (see Section 1.8.3) convert their operands to integers and return an integer result. Operands must be in the range -32768 to 32767 or an "Overflow" error occurs.
4. When a floating point value is converted to an integer, the fractional portion is rounded.

Example:
$10 \mathrm{C} \%=55.88$
20 PRINT C\%
RUN
56
5. If a double precision variable is assigned a single precision value, only the first seven digits, rounded, of the converted number will be valid. This is because only seven digits of accuracy were supplied with the single precision value. The absolute value of the difference between the printed double precision number and the original single precision value will be less than $6.3 E-8$ times the original single precision value.
Example:
$10 \mathrm{~A}=2.04$
$20 \mathrm{BH}=\mathrm{A}$
30 PRINT A;B\#
RUN
2.042 .039999961853027


### 1.8 EXPRESSIONS AND OPERATORS

An expression may be simply a string or numeric constant, or a variable, or it may combine constants and variables with operators to produce a single value.

Operators perform mathematical or logical operations on values. The operators provided by BASIC-80 may be divided into four categories:

1. Arithmetic
2. Relational
3. Logical
4. Functional

### 1.8.1 Arithmetic Operators

The arithmetic operators in order of precedence, are:

| Operator | Operation | Sample Expression |
| :---: | :--- | :---: |
| - | Exponentiation | $X \wedge Y$ |
| $\because, /$ | Negation | $-X$ |
|  | Multiplication, Floating Point Division | $X \cdot Y$ |
| ,- | Addition, Subtraction | $X / Y$ |
|  |  | $X+Y$ |

To change the order in which the operations are performed, use parentheses. Operations within parentheses are performed first. Inside parentheses, the usual order of operations is maintained.

Here are some sample algebraic expressions and their BASIC counterparts.

Algebraic Expression


### 1.8.1.1 Integer Division And Modulus Arithmetic

Two additional operators are available in Extended and Disk versions of BASIC-80: Integer division and modulus arithmetic.

Integer division is denoted by the backslash ( $\backslash$ ). The operands are rounded to integers (must be in the range -32768 to 32767) before the division is performed, and the quotient is truncated to an integer. For example:

$$
\begin{aligned}
& 10 \backslash 4=2 \\
& 25.68 \backslash 6.99=3
\end{aligned}
$$

The precedence of integer division is just after multiplication and floating point division.
Modulus arithmetic is denoted by the operator MOD. It gives the integer value that is the remainder of an integer division. For example:

> 10.4 MOD $4=2(10 / 4=2$ with a remainder 2$)$
> 25.68 MOD $6.99=5(26 / 7=3$ with a remainder 5$)$

The precedence of modulus arithmetic is just after integer division.

### 4.8.1.2 Overflow And Division By Zero

If, during the evaluation of an expression, a division by zero is encountered, the "Division by zero" error message is displayed, machine infinity with the sign of the numerator is supplied as the result of the division, and execution continues. If the evaluation of an exponentiation results in zero being raised to a negative power, the "Division by zero" error message is displayed, positive machine infinity is supplied as the result of the exponentiation, and execution continues.

If overflow occurs, the "Overflow" error message is displayed, machine infinity with the algebraically correct sign is supplied as the result, and execution continues.

### 1.8.2 Relational Operators

Relational operators are used to compare two values. The result of the comparison is either "true" ( -1 ) or "false" (0). This result may then be used to make a decision regarding program flow. (See IF, Section 2.26.)

| Operator | Relation Tested | Expression |
| :---: | :--- | :--- |
| $=$ | Equality | $X=Y$ |
| $<>$ | Inequality | $X<P Y$ |
| $<$ | Less than | $X<Y$ |
| $>$ | Greater than | $X>Y$ |
| $<=$ | Less than or equal to | $X<=Y$ |
| $>=$ | Greater than or equal to | $X>=Y$ |

(The equal sign is also used to assign a value to a variable. See LET, Section 2.30.)
When arithmetic and relational operators are combined in one expression, the arithmetic is always performed first. For example, the expression

$$
X+Y<(T-1) / Z
$$

is true if the value of $X$ plus $Y$ is less than the value of $T-1$ divided by $Z$. More examples:
IF $\operatorname{SIN}(X)<0$ GOTO 1000
IF I MOD $\mathrm{J}<>0$ THEN K=K+1

### 1.8.3 Logical Operators

Logical operators perform tests on multiple relations, bit manipulation, or Boolean operations. The logical operator returns a bitwise result which is either "true" (not zero) or "false" (zero). In an expression, logical operations are performed after arithmetic and relational operations. The outcome of a logical operation is determined as shown in the following table. The operators are listed in order of precedence.

| NOT |  |  |  |
| :---: | :---: | :---: | :---: |
|  | X | NOT $X$ |  |
|  | 1 | 0 |  |
|  | 0 | 1 |  |
| AND |  |  |  |
|  | X | $Y$ | X AND Y |
|  | 1 | 1 | 1 |
|  | 1 | 0 | 0 |
|  | 0 | 1 | 0 |
|  | 0 | 0 | 0 |
| OR |  |  |  |
|  | X | Y | X OR Y |
|  | 1 | 1 | 1 |
|  | 1 | 0 | 1 |
|  | 0 | 1 | 1 |
|  | 0 | 0 | 0 |
| XOR |  |  |  |
|  | X | $Y$ | X XOR Y |
|  | 1 | 1 | 0 |
|  | 1 | 0 | 1 |
|  | 0 | 1 | 1 |
|  | 0 | 0 | 0 |
| IMP |  |  |  |
|  | X | $Y$ | XIMP Y |
|  | 1 | 1 | 1 |
|  | 1 | 0 | 0 |
|  | 0 | 1 | 1 |
|  | 0 | 0 | 1 |
| EQV |  |  |  |
|  | X | Y | X EQV Y |
|  | 1 | 1 | 1 |
|  | 1 | 0 | 0 |
|  | 0 | 1 | 0 |
|  | 0 | 0 | 1 |

Just as the relational operators can be used to make decisions regarding program flow, logical operators can connect two or more relations and return a true or false value to be used in a decision (see IF, Section 2.26). For example:

```
IF D<200 AND F<4 THEN }8
IF |>10 OR K<0 THEN 50
IF NOT P THEN }10
```

Logical operators work by converting their operands to sixteen bit, signed. two's complement integers in the range -32768 to +32767 . (If the operands are not in this range. an error results.) If both operands are supplied as 0 or -1 , logical operators return 0 or -1 . The given operation is performed on these integers in bitwise fashion. i.e., each bit of the result is determined by the corresponding bits in the two operands.

Thus, it is possible to use logical operators to test bytes for a particular bit pattern. For instance, the AND operator may be used to "mask" all but one of the bits of a status byte at a machine I/O port. The OR operator may be used to "merge" two byies to create a particular binary value. The following examples will help demonstrate how the logical operators work.

63 AND $16=16$
$63=$ binary 111111 and $16=$ binary 10000 , so 63 AND $16=16$
15 AND $14=14 \quad 15=$ binary 1111 and $14=$ binary 1110 , so 15 AND $14=14$ (binary 1110 )
-1 AND 8=8
$-1=$ binary 1111111111111111 and $8=$ binary 1000 , so -1 AND $8=8$
4 OR 2=6
$4=$ binary 100 and $2=$ binary 10 , so 4 OR $2=6$ (binary 110)
10 OR $10=10$
$10=$ binary 1010 , so 1010 OR $1010=1010(10)$
-1 OR -2 $=-1$

NOT $X=-(X=1) \quad$ The two's complement of any integer is the bit complement plus one.

### 1.8.4 Functional Operators

A function is used in an expression to call a predetermined operation that is to be performed on an operand. BASIC-80 has "intrinsic" functions that reside in the system, such as SQR (square root) or SIN (sine). All of EASIC-80's intrinsic functions are described in Chapter 3.

BASIC-80 also allows "user defined" functions that are written by the programmer. See DEF FN, Section 2.11.

### 1.8.5 String Operations

Strings may be concatenated using +. For example:

```
10 A$="FILE" : BS="NAME"
20 PRINT AS + ES
30 PRINT "NEW" + A$ + B$
RUN
FILENAME
NEW FILENAME
```

Strings may be compared using the same relational operators that are used with numbers:

```
= <> < > <= >=
```

String comparisons are made by taking one character at a time from each string and comparing the ASCII codes. If all the ASCII codes are the same, the strings are equal. If the ASCII codes differ, the lower code number precedes the higher. If, during string comparison, theend of one string is reached, the shorter string is said to be smaller. Leading and trailing blanks are significant. Examples:

```
"AA" < "AB"
"FILENAME" = "FILENAME"
"X&">"X#"
"CL">"CL"
"kg">"KG"
"SMYTH" < "SMYTHE"
BS < "9/12/78" where BS = "8/12/78"
```

Thus, string comparisons can be used to test string values or to alphabetize strings. All string constants used in comparison expressions must be enclosed in quotation marks.

### 1.9 INPUT EDITING

If an incorrect character is entered as a line is being typed, it can be deleted with the DELete key or with BACKSPACE. DELete surrounds the deleted character(s) with backslashes, and BACKSPACE has the effect of backspacing over a character and erasing it. Once a character(s) has been deleted, simply continue typing the line as desired.

To delete a line that is in the process of being typed, type Control-U. A carriage return is executed automatically after the line is deleted.

To correct program lines for a program that is currently in memory, simply retype the line using the same line number. BASIC-80 will automatically replace the old line with the new line.

More sophisticated editing capabilities are provided in the Extended and Disk versions of BASIC-80. See EDIT, Section 2.16.

To delete the entire program that is currently residing in memory, enter the NEW command. (See Section 2.41.) NEW is usually used to clear memory prior to entering a new program.

### 1.10 ERROR MESSAGES

If BASIC-80 detects an error that causes program execution to terminate, an error message is printed. In the 8 K version, only the error code is printed. In the Extended and Disk versions, the entire error message is printed. For a complete list of BASIC-80 error codes and error messages, see Appendix J .

## CHAPTER 2

## BASIC-80 COMMANDS AND STATEMENTS

All of the BASIC-80 commands and statements are described in this chapter. Each description is formatted as follows:

FORMAT: Shows the correct format for the instruction. See below for format notation.
VERSIONS: Lists the versions of BASIC-80 in which the instruction is available.
PURPOSE: Tells what the instruction is used for.
REMARKS: Describes in detail how the instruction is used.
EXAMPLE: $\quad$ Shows sample programs or program segments that demonstrate the use of the instruction.

## Format Notation

Wherever the format for a statement or command is given, the following rules apply:

1. Items in capital letters must be input as shown.
2. Items in lower case letters enclosed in angle brackets $(\rangle)$ are to be supplied by the user.
3. Items in square brackets ([]) are optional.
4. All punctuation except angle brackets and square brackets (i.e., commas, parentheses, semicolons, hyphens, equal signs) must be included where shown.
5. Items followed by an ellipsis (. . .) may be repeated any number of times (up to the length of the line).
6. Items separated by a vertical bar (|) are mutually exclusive; choose one.

### 2.1 AUTO

FORMAT: $\quad$ AUTO [<line number $>$ [, <increment $>$ l]
VERSIONS: Extended, Disk
PURPOSE: To generate a line number automatically after every carriage return.
REMARKS: AUTO begins numbering at <line number>and increments each subsequent line number by <increment>. The default for both values is 10 . If <line number> is followed by a comma but <increment> is not specified, the last increment specified in an AUTO command is assumed.

If AUTO generates a line number that is already being used, an asterisk is printed after the number to warn the user that any input will replace the existing line. However, typing a carriage return immediately after the asterisk will save the line and generate the next line number.

AUTO is terminated by typing Control-C. The line in which Control-C is typed is not saved. After Control-C is typed, BASIC returns to command level.

| AUTO 100.50 | Generates line numbers $100,150,200 \ldots$ |
| :--- | :--- |
| AUTO | Generates line numbers $10,20,30,40 \ldots$ |

### 2.2 CALL

FORMAT: $\quad$ CALL $<$ variable name $>$ [(<argument list $>$ )]
VERSIONS: Extended, Disk
PURPOSE: To call an assembly language subroutine.
REMARKS: The CALL statement is one way to transfer program flow to an assembly language subroutine. (See also the USR function, Section 3.40)
<variable name> contains an address that is the starting point in memory of the subroutine. <variable name> may not be an array variable name. <argument list> contains the arguments that are passed to the assembly language subroutine.

The CALL statement generates the same calling sequence used by Microsoft's FORTRAN, COBOL and BASIC compilers.

EXAMPLE: $\quad 110$ MYROUT=\&HDOOO 120 CALL MYROUT (I,J,K)
-
-
-

### 2.3 CHAIN

FORMAT:
VERSIONS:
CHAIN [MERGE] <filename>[,[<line number exp>][,ALL][,DELETE<range>]]
Disk
PURPOSE:
REMARKS:
To call a program and pass variables to it from the current program.
<filename> is the name of the program that is called. Example:
CHAIN"PROG1"
<line number exp>is a line number or an expression that evaluates to a line number in the called program. It is the starting point for execution of the called program. If it is omitted, execution begins at the first line. Example:

## CHAIN"PROG1",1000

<line number exp> is not affected by a RENUM command.
With the ALL option, every variable in the current program is passed to the called program. If the ALL option is omitted, the current program must contain a COMMON statement to list the variables that are passed. See Section 2.7. Example:

CHAIN"PROG1",1000,ALL

If the MERGE option is included, it allows a subroutine to be brought into the BASIC program as an overlay. That is, a MERGE operation is performed with the current program and the called program. CHAIN with the MERGE option leaves files open and preserves the OPTION BASE parameter. The called program must be an ASCII file if it is to be MERGEd. Example:

CHAIN MERGE"OVRLAY". 1000
After an overlay is brought in, it is usually desirable to delete it so that a new overlay may be brought in. To do this, use the DELETE option. Example:

CHAIN MERGE"OVRLAY2",1000,DELETE 1000-5000
The line numbers in <range> are affected by the RENUM command.
NOTE:

NOTE:
The Microsoft BASIC compiler does not support the ALL. MERGE, and DELETE options to CHAIN. If you wish to maintain compatibility with the BASIC compiler, it is recommended that COMMON be used to pass variables and that overlays not be used.

If the MERGE option is omitted. CHAIN does not preserve variable types or user-defined functions for use by the chained program. That is, any DEFINT, DEFSNG, DEFDBL. DEFSTR, or DEFFN statement containing shared variables must be restated in the chained program.

### 2.4 CLEAR

FORMAT:
VERSIONS:
PURPOSE

REMARKS: <expression1> is a memory location which, if specified. sets the highest location available for use by BASIC-80.
<expression2>sets aside stack space for BASIC. The default is 1000 bytes or one-eighth of the available memory, whichever is smaller.

NOTE: In previous versions of BASIC-80, <expression $1>$ set the amount of string space and <expression2> set the end of memory. BASIC-80, release 5.0 and later, allocates string space dynamically. An "Out of string space" error occurs only if there is no free memory left for BASIC to use.

EXAMPLE:
CLEARI.[<expression1>][.<expression2>]]
8K, Extended, Disk
To set all numeric variables to zero and all string variables to null; and, optionally, to set the end of memory and the amount of stack space.

CLEAR

CLEAR , 32768
CLEAR.,2000
CLEAR,32768.2000

### 2.5 NUMBER UNASSIGNED

### 2.6 CLOSE

FORMAT:
VERSIONS: PURPOSE:

REMARKS:

EXAMPLE:

### 2.7 COMMON

FORMAT: $\quad$ COMMON <list of variables>
VERSIONS: Disk
PURPOSE: To pass variables to a CHAINed program.
REMARKS: The COMMON statement is used in conjunction with the CHAIN statement. COMMON statements may appear anywhere in a program, though it is recommended that they appear at the beginning. The same variable cannot appear in more than one COMMON statement. Array variables are specified by appending' "()" to the variable name. If all variables are to be passed, use CHAIN with the ALL option and omit the COMMON statement.

EXAMPLE: $\quad 100$ COMMON A,B,C,D(),G\$
110 CHAIN "PROG3", 10
-
-
-

### 2.8 CONT

FORMAT: CONT
VERSIONS: 8K, Extended, Disk
PURPOSE:
To continue program execution after a Control-C has been typed, or a STOP or END statement has been executed.


#### Abstract

REMARKS: Execution resumes at the point where the break occurred. If the break occurred after a prompt from an INPUT statement, execution continues with the reprinting of the prompt (? or prompt string). CONT is usually used in conjunction with STOP for debugging. When execution is stopped, intermediate values may be examined and changed using direct mode statements. Execution may be resumed with CONT or a direct mode GOTO, which resumes execution at a specified line number. With the Extended and Disk versions, CONT may be used to continue execution after an error.

CONT is invaiid if the program has been edited during the break. In 8K GASiC-80, execution cannot be CONTinued if a direct mode error has occurred during the break.

EXAMPLE: See example Section 2.61, STOP.


### 2.9 NUMBER UNASSIGNED

### 2.10 DATA

FORMAT:
VERSIONS:
PURPOSE:

REMARKS:

EXAMPLE:

### 2.11 DEF FN

FORMAT:
VERSIONS:

DATA <list of constants>
8K, Extended. Disk
To store the numeric and string constants that are accessed by the program's READ statement(s). (See READ, Section 2.54).

DATA statements are nonexecutable and may be placed anywhere in the program. A DATA statement may contain as many constants as will fit on a line (separated by commas), and any number of DATA statements may be used in a program. The READ statements access the DATA statements in order (by line number) and the data contained therein may be thought of as one continuous list of items, regardless of how many items are on a line or where the lines are placed in the program.
<list of constants> may contain numeric constants in any format, i.e., fixed point, floating point op integer. (No numeric expressions are allowed in the list.) String constants in DATA statements must be surrounded by double quotation marks only if they contain commas, colons or significant leading or trailing spaces. Otherwise, quotation marks are not needed.

The variable type (numeric or string) given in the READ statement must agree with the corresponding constant in the DATA statement.

DATA statements may be reread from the beginning by use of the RESTORE statement (Section 2.57).

See examples in Section 2.54, READ.


#### Abstract

PURPOSE: $\quad$ To define and name a function that is written by the user. REMARKS: <name>must be a legal variable name. This name, preceded by FN, becomes the name of the function. <parameter list> is comprised of those variable names in the function definition that are to be replaced when the function is called. The items in the list are separated by commas. <function definition> is an expression that performs the operation of the function. It is limited to one line. Variable names that appear in this expression serve only to define the function; they do not affect program variables that have the same name. A variable name used in a function definition may or may not appear in the parameter list. If it does, the value of the parameter is supplied when the function is called. Otherwise, the current value of the variable is used.

The variables in the parameter list represent, on a one-to-one basis, the argument variables or values that will be given in the function call. (Remember, in the 8 K version only one argument is allowed in a function call, therefore the DEF FN statement will contain only one variable.)

In Extended and Disk BASIC-80, user-defined functions may be numeric or string; in 8 K user-defined string functions are not allowed. If a type is specified in the function name, the value of the expression is forced to that type before it is returned to the calling statement. If a type is specified in the function name and the argument type does not match, a "Type mismatch" error occurs.


A DEF FN statement must be executed before the function it defines may be called. If a function is called before it has been defined, an "Undefined user function" error occurs. DEF FN is illegal in the direct mode.

EXAMPLE:

```
\bullet
```



```
410 DEF FNAB(X,Y)=X^3/Y^2
420 T=FNAB(I,J)
    \bullet
```

Line 410 defines the function FNAB. The function is called in line 420.

### 2.12 DEFINT/SING/DBL/STR

FORMAT:
VERSIONS:
PURPOSE:
REMARKS:

EXAMPLE:

DEF<type><range(s) of letters> where <type> is INT, SNG, DBL, or STR
Extended, Disk
To declare variable types as integer, single precision, double precision, or string.
A DEFtype statement declares that the variable names beginning with the letter(s) specified will be that type variable. However, a type declaration character always takes precedence over a DEFtype statement in the typing of a variable.

If no type declaration statements are encountered, BASIC-80 assumes all variables without declaration characters are single precision variables.

10 DEFDBL L-P

All variables beginning with the letters $L, M, N, O$, and $P$ will be double precision variables.

```
10 DEFSTR A
10 DEFINT I-N, W-Z
```

All variables beginning with the letter $A$ will be string variables.
All variables beginning with the letters I, J, K, L, M, N; W, X, Y, Z will be integer variables.

### 2.13 DEF USR

| FORMAT: | DEF USR $[<$ digit $>]=$ <integer expression $>$ |
| :--- | :--- |
| VERSIONS: | Extended, Disk |

PURPOSE: To specify the starting address of an assembly language subroutine.

REMARKS: <digit> may be any digit from 0 to 9 . The digit corresponds to the number of the USR routine whose address is being specified. If < digit> is omitted, DEF USRO is assumed. The value of <integer expression> is the starting address of the USR routine. See Appendix $C$, Assembly Language Subroutines.

Any number of DEF USR statements may appear in a program to redefine subroutine starting addresses, thus allowing access to as many subroutines as necessary.

## EXAMPLE:

### 2.14 DELETE

## FORMAT:

VERSIONS:
DELETE[<line number>][<line number>]

PURPOSE: Extended, Disk

REMARKS: BASIC-80 always returns to command level after a DELETE is executed. If <line number>

## EXAMPLE:

 does not exist, an "Illegal function call" error occurs.| DELETE 40; | Deletes line 40 |
| :--- | :--- |
| DELETE 40-109 | Deletes lines 40 through 100, inclusive |
| DELETE-40 | Deletes all lines up io and including line 40 |

### 2.15 DIM

FORMAT: $\quad$ DIM <list of subscripted variables>
VERSIONS:
8K, Extended, Disk
PURPOSE: To specify the maximum values for array variable subscripts and allocate storage accordingly.

```
REMARKS: If an array variable name is used without a DIM statement, the maximum value of its
    subscript(s) is assumed to be 10. If a subscript is used that is greater than the maximum
    specified, a "Subscript out of range" error occurs. The minimum value for a subscript is
    always 0, unless otherwise specified within the OPTIONBASE statement (see Section 2.46).
    The DIM statement sets all the elements of the specified arrays to an initial value of zero.
EXAMPLE: }10\mathrm{ DIM A(20)
20 FOR I=0 TO 20
30 READ A(I)
40 NEXT I
    \bullet
    \bullet
    *
```


### 2.16 EDIT

FORMAT: EDIT <line number>
VERSIONS: Extended, Disk
PURPOSE: To enter Edit Mode at the specified line.
REMARKS: In Edit Mode, it is possible to edit portions of a line without retyping the entire line. Upon entering Edit Mode, BASIC-80 types the line number of the line to be edited, then it types a space and waits for an Edit Mode subcommand.

Edit Mode Subcommands
Edit Mode subcommands are used to move the cursor or to insert, delete, replace, or search for text within a line. The subcommands are not echoed. Most of the Edit Mode subcommands may be preceded by an integer which causes the command to be executed that number of times. When a preceding integer is not specified, it is assumed to be 1 .

Edit Mode Subcommands may be categorized according to the following functions:

1. Moving the cursor
2. Inserting text
3. Deleting text
4. Finding text
5. Replacing text
6. Ending and restarting Edit Mode

NOTE
In the descriptions that follow, <ch> represents any character, <text> represents a string of characters of arbitrary length, [i] represents an optional integer (the default is 1 ), and $\$$ represents the Escape key.

Space Use the space bar to move the cursor to the right. [i]Space moves the cursor i spaces to the right. Characters are printed as you space over them.

Rubout In Edit Mode, [i]DELete moves the cursor i spaces to the left (backspaces). Characters are printed as you backspace over them.
2. Inserting Text
$1 \quad \mid<t e x t>\$$ inserts <text> at the current cursor position. The inserted characters are printed on the terminal. To terminate insertion, type Escape. If Carriage Return is typed during an Insert command, the effect is the same as typing Escape and then Carriage Return. During an Insert command, the Delete key on the terminal may be used to delete characters to the left of the cursor. If an attempt is made to insert a character that will make the line longer than 255 characters, a bell (Control-G) is typed and the character is not printed.
$x$
The $X$ subcommand is used to extend the line. $X$ moves the cursor to the end of the line. goes into insert mode, and allows insertion of text as if an Insert command had been given. When you are finished extending the line, tyoe Escape or Carriage Return.
3. Deleting Text

D [i]D deletes i characters to the right of the cursor. The deleted characters are echoed between backslashes, and the cursor is positioned to the right of the last character deleted. If there are fewer than icharacters to the right of the cursor, iD deletes the remainder of the line.

H
$H$ deletes all characters to the right of the cursor and then automatically enters insert mode. H is useful for replacing statements at the end of a line.
4. Finding Text

S The subcommand [i]S<ch> searches for the ith occurrence of <ch> and positions the cursor before it. The character at the current position is not included in the search. If <ch> is not found, the cursor will stop at the end of the line. All characters passed over during the search are printed.

K
The subcommand [i]K<ch> is similar to [i]S<ch>, except all the characters passed over in the search are deleted. The cursor is positioned before <ch>, and the deleted characters are enclosed in backslashes.

## 5. Replacing Text

C The subcommand $\mathrm{C}<\mathrm{ch}>$ changes the next character to $<\mathrm{ch}>$. If you wish to change the next i characters. use the subcommand ic, followed by i characters. After the ith new character is typed, change mode is exited and you will return to Edit Mode.
6. Ending and Restarting Edit Mode
<cr> Typing Carriage Return prints the remainder of the line, saves the changes you made and exits Edit Mode.

E The E subcommand has the same effect as Carriage Return, except the remainder of the line is not printed.

Q The $Q$ subcommand returns to BASIC-80 command level, without saving any of the changes that were made to the line during Edit Mode.
$L \quad$ The $L$ subcommand lists the remainder of the line (saving any changes made so far) and repositions the cursor at the beginning of the line, still in Edit Mode. $L$ is usually used to list the line when you first enter Edit Mode.

A
The A subcommand lets you begin editing a line over again. It restores the original line and repositions the cursor at the beginning.

## NOTE

If BASIC-80 receives an unrecognizable command or illegal character while in Edit Mode, it prints a bell (Control-G) and the command or character is ignored.

Syntax Errors
When a Syntax Error is encountered during execution of a program, BASIC-80 automatically enters Edit Mode at the line that caused the error. For example:
$10 K=2(4)$
RUN
?Syntax error in 10
10
When you finish editing the line and type Carriage Return (or the E subcommand), BASIC-80 reinserts the line, which causes all variable values to be lost. To preserve the variable values for examination, first exit Edit Mode with the $Q$ subcommand. BASIC-80 will return to command level, and all variable values will be preserved.

## Control-A

To enter Edit Mode on the line you are currently typing, type Control-A. BASIC-80 responds with a carriage return, an exclamation point (!) and a space. The cursor will be positioned at the first character in the line. Proceed by typing an Edit Mode subcommand.

## NOTE

Remember, if you have just entered a line and wish to go back and edit it. the command "EDIT." will enter Edit Mode at the current line. (The line number symbol "." always refers to the current line.)

### 2.17 END

| FORMAT: | END |
| :--- | :--- |
| VERSIONS: | $8 K$, Extended, Disk |
| PURPOSE: | To terminate program execution, close all files and return to command level. |
| REMARKS: | END statements may be placed anywhere in the program to terminate execution. Unlike <br> the STOP statement. END does not cause a BREAK message to be printed. An END <br> statement at the end of a program is optionai. BASIC-80always returns tocommand level <br> after an END is executed. |
|  | 520 IF K $>1000$ THEN END ELSE GOTO 20 |

### 2.18 ERASE

FORMAT:
VERSIONS:
ERASE <list of array variables>

PURPOSE:
8K, Exiended, Disk

REMARKS:

NOTE:
EXAMPLE:
To eliminate arrays from a program.
Arrays may be redimensioned after they are ERASEd, or the previously allocated array space in memory may be used for other purposes. If an attempt is made to redimension an array without first ERASEing it, a "Redimensioned array" error occurs. The Microsoft BASIC compiler does not support ERASE.
-
-
-
450 ERASE A,B
460 DIM B(99)
-
-
-

### 2.19 ERR AND ERL VARIABLES

When an error handling subroutine is entered, the variable ERR contains the error code for the error, and the variable ERL contains the line number of the line in which the error was detected. The ERR and ERL variables are usually used in IF . . THEN statements to direct program flow in the error trap routine.

If the statement that caused the error was a direct mode statement, ERL will contain 65535. To test if an error occurred in a direct statement, use IF 65535 = ERL THEN . . . Otherwise, use

$$
\begin{aligned}
& \text { IF ERR = error code THEN } \ldots \\
& \text { IF ERL }=\text { line number THEN } . .
\end{aligned}
$$

If the line number is not on the right side of the relational operator, it cannot be renumbered by RENUM. Because ERL and ERR are reserved variables, neither may appear to the left of the equal sign in a LET (assignment) statement. BASIC-80's error codes are listed in Appendix J.

### 2.20 ERROR

| FORMAT: | ERROR <integer expression> |
| :--- | :--- |
| VERSIONS: | Extended, Disk |

PURPOSE: 1) To simulate the occurrence of a BASIC-80 error; or 2) to allow error codes to be defined by the user.

REMARKS: The value of <integer expression>must be greater than 0 and less than 255 . If the value of <integer expression>equals an error code already in use by BASIC-80 (see Appendix J). the ERROR statement will simulate the occurrence of that error, and the corresponding error message will be printed. (See Example 1.)

To define your own error code, use a value that is greater than any used by BASIC-80's error codes. (It is preferable to use the highest available values, so compatibility may be maintained when more error codes are added to BASIC-80.) This user-defined error code may then be conveniently handled in an error trap routine. (See Example 2.)

If an ERROR statement specifies a code for which no error message has been defined, BASIC-80 responds with the message UNPRINTABLE ERROR. Execution of an ERROR statement for which there is no error trap routine causes an error message to be printed and execution to halt.

LIST
$10 S=10$
$20 \mathrm{~T}=5$
30 ERROR S + T
40 END
Ok
RUN
String too long in line 30
Or, in direct mode:
Ok
ERROR 15 (you type this line)
String too long (BASIC-80 types this line)
Ok
EXAMPLE 2:

```
                            -
                            -
110 ON ERROR GOTO 400
120 INPUT "WHAT IS YOUR BET";B
130 IF B > 5000 THEN ERROR 210
    \bullet
    \bullet
    400 IF ERR = 210 THEN PRINT "HOUSE LIMIT IS $5000"
410 IF ERL = 130 THEN RESUME 120
```

    -
    -
    -
    
### 2.21 FIELD

| FORMAT: | FIELD[\#]<file number>.<field width> AS <string variable>. . . |
| :--- | :--- |
| VERSIONS: | Disk |
| PURPOSE: | To allocate space for variables in a random file buffer. |
| REMARKS: | To get data out of a random buffer after a GET or to enter data before a PUT, a FIELD <br> statement must have been executed. |
|  | <file number> is the number under which the file was OPENed. <field width> is the <br> number of characters to be allocated to <string variable>. For example, | number of characters to be allocated to <string variable>. For example,

```
FIELD 1, 20 AS NS, 10 AS IDS. 40 AS ADD\$
```

allocates the first 20 positions (oytes) in the random file buffer to the string variable $N S$, the next 10 positions to IO\$, and the next 40 positions to ADDS. FIELD does NOT place any data in the random file buffer. (See LSET/RSET and GET.)

The total number of bytes allocated in a FIELD statement must not exceed the record length that was specified when the file was OPENed. Otherwise, a "Field overflow" error occurs. (The default record length is 128.)

Any number of FIELD statements may be executed for the same file, and all FIELD statements that have been executed are in effect at the same time.

EXAMPLE:
NOTE:
See Appendix B .
Do not use a FIELDed variable name in an INPUT or LET statement. Once a variable name is FIELDed, it points to the correct place in the random file buffer. If a subsequent INPUT or LET statement with that variable name is executed, the variable's pointer is moved to string space.

### 2.22 FOR . . . NEXT.

FORMAT:
FOR <variable>=x TO y [STEP z]
-
-
NEXT [<variable>][,<variable>...]
where $x, y$ and $z$ are numeric expressions.
VERSIONS: $\quad 8 K$, Extended, Disk
PURPOSE: $\quad$ To allow a series of instructions to be performed in a loop a given number of times.
REMARKS: <variable> is used as a counter. The first numeric expression $(x)$ is the initial value of the counter. The second numeric expression $(y)$ is the final value of the counter. The program lines following the FOR statement are executed until the NEXT statement is encountered. Then the counter is incremented by the amount specified by STEP. A check is performed to see if the value of the counter is now greater than the final value ( $y$ ). If it is not greater, BASIC-80 branches back to the statement after the FOR statement and the process is repeated. If it is greater, execution continues with the statement following the NEXT
statement. This is a FOR . . . NEXT loop. If STEP is not specified, the increment is assumed to be one. If STEP is negative, the final value of the counter is set to be less than the initial value. The counter is decremented each time through the loop, and the loop is executed until the counter is less than the final value.

The body of the loop is skipped if the initial value of the loop times the sign of the step exceeds the final value time the sign of the step.

## Nested Loops

FOR. . . NEXT loops may be nested, that is, a FOR . . . NEXT loop may be placed within the context of another FOR . . . NEXT loop. When loops are nested. each loop must have a unique variable name as its counter. The NEXT statement for the inside loop must appear before that for the outside loop. If nested loops have the same end point, a single NEXT statement may be used for all of them.

The variable(s) in the NEXT statement may be omitted, in which case the NEXT statement will match the most recent FOR statement. If a NEXT statement is encountered before its corresponding FOR statement, a "NEXT without FOR" error message is issued and execution is terminated.

EXAMPLE 1: $\quad 10 \mathrm{~K}=10$
20 FOR I=1 TO K STEP 2
30 PRINT I:
$40 \mathrm{~K}=\mathrm{K}+10$
50 PRINT K
60 NEXT
RUN
20
330
540
750
960
Ok
EXAMPLE 2: $\quad 10 \mathrm{~J}=0$
20 FOR I=1 TO J
30 PRINT I
40 NEXT I
In this example, the loop does not execute because the initial value of the loop exceeds the final value.

EXAMPLE 3: $\quad 101=5$
20 FOR I= 1 TO I+5
30 PRINT I;
40 NEXT
RUN
$\begin{array}{llllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}$
Ok
In this example, the loop executes ten times. The final value for the loop variable is always set before the initial value is set. (Note: Previous versions of BASIC-80 set the initial value of the loop variable before setting the final value; i.e., the above loop would have executed six times.)

FOR and NEXT statements immediately following ELSE's are now considered in checking for the FOR/NEXT loop nesting.

| 2.23 GET |  |
| :--- | :--- |
| FORMAT: | GET [\#]<file number $>[$ <record number>] |
| VERSIONS: | Disk |
| PURPOSE: | To read a record from a random disk file into a random buffer. |
| REMARKS: | <file number> is the number under which the file was OPENed. If <record number> is <br> omitted, the next record (after the last GET) is read into the buffer. The largest possible <br> record number is 32767. |
|  | See Appendix 8. |

### 2.25 GOTO

| FORMAT: | GOTO<line number> |
| :---: | :---: |
| VERSIONS: | 8K, Extended, Disk |
| PURPOSE: | To branch unconditionally out of the normal program sequence to a specified line number. |
| REMARKS: | If <line number> is an executable statement, that statement and those following are executed. If it is a nonexecutable statement. execution proceeds at the first executable statement encountered aíter <line number>. |
| EXAMPLE: | LIST |
|  | 10 READ R |
|  | 20 PRINT "R = "; R, |
|  | $30 \mathrm{~A}=3.14{ }^{\circ} \mathrm{R} \wedge 2$ |
|  | 40 PRINT "AREA $=$ "; $A$ |
|  | 50 GOTO 10 |
|  | 60 DATA 5,7,12 |
|  | Ok |
|  | RUN |
|  | $R=5 \quad$ AREA $=78.5$ |
|  | $R=7 \quad$ AREA $=153.86$ |
|  | $R=12 \quad A R E A=452.16$ |
|  | ? Out of data in 10 |
|  | Ok |

### 2.26 IF . . . THEN[. . . ELSE] AND IF . . . GOTO

FORMAT: $\quad \mid F<e x p r e s s i o n>$ THEN $[:]<$ statement(s)> | <line number> [ELSE[:]<statement(s)> | <line number>]

FORMAT: $\quad$ IF <expression> GOTO <line number> [ELSE[:]<statement(s)>| <line number>]
VERSIONS: 8K, Extended, Disk
NOTE:
PURPOSE: To make a decision regarding program flow based on the result returned by an expression.

REMARKS: If the result of <expression> is not zero, the THEN or GOTO clause is executed. THEN may be followed by either a line number for branching or one or more statements to be executed. GOTO is always followed by a line number. If the result of <expression> is zero, the THEN or GOTO clause is ignored and the ELSE clause, if present, is executed. Execution continues with the next executable statement. (ELSE is allowed only in Extended and Disk versions.) Extended and Disk versions allow a comma before THEN.

Nesting of IF Statements
In the Extended and Disk versions, IF . . THEN . . . ELSE statements may be nested. Nesting is limited only by the length of the line. For example

IF X>Y THEN PRINT "GREATER" ELSE IF Y $>X$ THEN PRINT "LESS THAN" ELSE PRINT "EQUAL"
is a legal statement. If the statement does not contain the same number of ELSE and THEN clauses, each ELSE is matched with the closest unmatched THEN. For example

IF $A=B$ THEN IF $B=C$ THEN PRINT " $A=C$ " ELSE PRINT " $A<>C$ "
will not print " $A<>C$ " when $A<>B$.
If an IF . . THEN statement is followed by a line number in the direct mode, an "Undefined line" error results unless a statement with the specified line number had previously been entered in the indirect mode.

| NOTE: | When using If to test equality for a value that is the result of a floating point computat remember that the internal representation of the value may not be exact. Therefore, test should be against the range over which the accuracy of the value may vary. example, to test a computed variable $A$ against the value 1.0, use: $\text { IF ABS }(A-1.0)<1.0 E-6 \text { THEN . . }$ |
| :---: | :---: |
|  | This test returns true if the value of $A$ is 1.0 with a relative error of less than 1.0E-6. |
| EXAMPLE 1: | 200 IF I THEN GET\#1, |
|  | This statement GETs record number 1 if $I$ is not zero. |
| EXAMPLE 2: | 100 IF ( $1<20$ ) ${ }^{*}(1>10)$ THEN DB=1979-1:GOTO 300 110 PRINT "OUT OF RANGE" |

In this example, a test determines if 1 is greater than 10 and less than $20.1 f($ is in this range, DB is calculated and execution branches to line 300 . If I is not in this range, execution continues with line 110.

EXAMPLE 3: $\quad 210$ IF IOFLAG THEN PRINT AS ELSE LPRINT AS
This statement causes printed output to go either to the terminal or the line printer, depending on the value of a variable (IOFLAG). If IOFLAG is zero, output goes to the line printer, otherwise output goes to the terminal.

### 2.27 INPUT

FORMAT:
VERSIONS:
PURPOSE:
REMARKS:

INPUT[;][<"prompt string">;]<list of variables>
8K, Extended. Disk
To allow input from the terminal during program execution.
When an INPUT statement is encountered, program execution pauses and a question mark is printed to indicate the program is waiting for data. If <"prompt string" $>$ is included, the string is printed before the question mark. The required data is then entered at the terminal.

If INPUT is immediately followed by a semicolon, then the carriage return typed by the user to input data does not echo a carriage return/line feed sequence.

The data that is entered is assigned to the variable(s) given in <variable list>. The number of data items supplied must be the same as the number of variables in the list. Data items are separated by commas.

The variable names in the list may be numeric or string variable names (including subscripted variables). The type of each data item that is input must agree with the type specified by the variable name. (Strings input to an INPUT statement need not be surrounded by quotation marks.)

Responding to INPUT with too many or too few items, or with the wrong type of value (numeric instead of string, etc.) causes the message "?Redo from start" to be printed. No assignment of input values is made until an acceptable response is given.

In the 8 K version, INPUT is illegal in the direct mode.
If a Control-C is executed while in the INPUT mode, typing CONT will continue the program.

EXAMPLE: 10 INPUT X 20 PRINT X "SQUARED IS" Xへ2
30 END
RUN
? 5 (The 5 was typed in by the user in response to the question mark.)
5 SQUARED IS 25
Ok
LIST
$10 \mathrm{PI}=3.14$
20 INPUT "WHAT IS THE RADIUS";R
30 A=Pl*R^2
40 PRINT "THE AREA OF THE CIRCLE IS";A
50 PRINT
60 GOTO 20
Ok
RUN
WHAT IS THE RADIUS? 7.4 (User types 7.4)
THE AREA OF THE CIRCLE IS 171.946
WHAT IS THE RADIUS?
etc.

### 2.28 INPUT\#

FORMAT: $\quad$ INPUT\#<file number $>$, <variable list $>$
VERSIONS:
Disk
PURPOSE: To read data items from a sequential disk file and assign them to program variables.

REMARKS: <file number> is the number used when the file was OPENed for input. <variable list> contains the variable names that will be assigned to the items in the file. (The variable type must match the type specified by the variable name.) With INPUT\#, no question mark is printed, as with INPUT.

The data items in the file should appear just as they would if data were being typed in response to an INPUT statement. With numeric values, leading spaces, carriage returns and line feeds are ignored. The first character encountered that is not a space, carriage return or line feed is assumed to be the start of a number. The number terminates on a space, carriage return, line feed or comma.

If BASIC-80 is scannning the sequential data file for a string item, leading spaces. carriage returns and line feeds are also ignored. The first character encountered that is not a space, carriage return, or line feed is assumed to be the start of a string item. If this first character is a quotation mark ("), the string item will consist of all characters read between the first quotation mark and the second. Thus, a quoted string may not contain a quotation mark as a character. If the first characier of the string is not a quotation mark, the string is an unquoted string, and will terminate on a comma, carriage or line feed (or after 255 characters have been read). If end of file is reached when a numeric or string item is being INPUT, the item is terminated.

EXAMPLE: See Appendix $B$.

### 2.29 KILLL

FORMAT:
VERSIONS:
PURPOSE:
REMARKS:

EXAMPLE:
KILL<filename>
Disk
To delete a file from disk.
If a KILL statement is given for a file that is currently OPEN, a "File already open" error occurs.

KILL is used for all types of disk files: program files, random data files and sequential data files.

200 KILL "DATA1"
See also Appendix B.
[LET] <variable>=<expression>
8K, Extended, Disk
To assign the value of an expression to a variable.
Notice the word LET is optional, i.e., the equal sign is sufficient when assigning an expression to a variable name.

```
EXAMPLE: 110 LET D=12
120 LET E=12^2
130 LET F=12^4
140 LET SUM=0+E+F
    \bullet
    \bullet
    \bullet
    or
110 D=12
120 E=12^2
130 F=12^4
140 SUM=D+E+F
    \bullet
    -
    \bullet
```


### 2.31 LINE INPUT

FORMAT: LINE INPUT [;] [<"prompt string">:] <string variable>
VERSIONS: Extended, Disk
PURPOSE: $\quad$ To input an entire line (up to 254 characters) to a string variable, without the use of delimiters.

REMARKS: The prompt string is a string literal that is printed at the terminal before input is accepted. A question mark is not printed unless it is part of the prompt string. All input from the end of the prompt to the carriage return is assigned to <string variable>.

If LINE INPUT is immediately followed by a semicolon, then the carriage return typed by the user to end the input line does not echo a carriage return/line feed sequence at the terminal.

A LINE INPUT may be escaped by typing Control-C. BASIC-80 will return to command level and type Ok. Typing CONT resumes execution at the LINE INPUT.

EXAMPLE:
See Example, Section 2.32, LINE INPUT\#.

### 2.32 LINE INPUT*

## FORMAT:

VERSION: Disk
PURPOSE: To read an entire line (up to 254 characters), without delimiters, from a sequential disk data file to a string variable.

REMARKS: <file number> is the number under which the file was OPENed. <string variable> is the variable name to which the line will be assigned. LINE INPUT\# reads all characters in the sequential file up to a carriage return/line feed sequence, and the next LINE INPUT\# reads all characters up to the next carriage return. (If a line feed/carriage return sequence is encountered, it is preserved.)

LINE INPUT\# is especially useful if each line of a data file has been broken into fields. or if a BASIC-80 program saved in ASCII mode is being read as data by another program.

EXAMPLE:

```
10 OPEN "O",1,"LIST"
    20 LINE INPUT "CUSTOMER INFORMATION? ';C$
    30 PRINT #1, £4
    40 CLOSE }
    50 OPEN "I",1,"LIST"
    60 LINE INPUT #1, C$
    70 PRINT C$
    80 CLOSE 1
    RUN
    CUSTOMER INFORMATION? LINDA JONES 234,4 MEMPHIS
    LINDA JONES 234,4 MEMPHIS
    Ok
```


### 2.33 LIST

FORMAT 1:
VERSIONS:
FORMAT 2:
VERSIONS:
PURPOSE:
REMARKS:

EXAMPLES
FORMAT 1:

LIST
LIST 500

Lists the program currently in memory.
In the 8 K version, lists all programs lines from 500 to the end.
In Extended and Disk, lists line 500.

FORMAT 2:
LIST 150- Lista all lines from 150 to the end.
LIST-1000 Lista all lines from the lowest number through 1000.
LIST 150-1000 Lists lines 150 through 1000, inclusive.

### 2.34 LLIST

FORMAT:
VERSIONS:
PURPOSE:
REMARKS:

NOTE:
EXAMPLE:

### 2.35 LOAD

FORMAT:
VERSION:
PURPOSE:
REMARKS: <filename> is the name that was used when the file was SAVEd. (With CP/M, the default extension .BAS is supplied.)

LOAD closes all open files and deletes all variables and program lines currently residing in memory before it loads the designated program. However, if the " $R$ " option is used with LOAD, the program is RUN after it is LOADed, and all open data files are kept open. Thus, LOAD with the "R" option may be used to chain several programs (or segments of the same program). Information may be passed between the programs using their disk data files.

EXAMPLE: LOAD "STRTRK",R

### 2.36 LPRINT AND LPRINT USING

FORMAT: LPRINT [<list of expressions>]
LPRINT USING <"format string">:<list of expressions>
VERSIONS: Extended, Disk
PURPOSE
REMARKS:

NOTE: $\quad$ LPRINT and LLIST are not included in all implementations of BASIC-80.

### 2.37 LSET AND RSET

| FORMAT: | LSET <string variable> = <string expression> <br> RSET <string variable> = <string expression> |
| :---: | :---: |
| VERSION: | Disk |
| PURPOSE: | To move data from memory to a random file buffer (in preparation for a PUT statement). |
| REMARKS: | If <string expression> requires fewer bytes than were FIELDed to <string variable>, LSET left-justifies the string in the field, and RSET right-justifies the string. (Spaces are used to pad the extra positions.) If the string is too long for the field, characters are dropped from the right. Numeric values must be converted to strings before they are LSET or RSET. See the MKI\$, MKS\$, MKD\$ functions, Section 3.25. |
| EXAMPLE: | $\begin{aligned} & 150 \text { LSET AS=MKS }(A M T) \\ & 160 \text { LSET DS }=\text { DESC }(\$) \end{aligned}$ |
|  | See also Appendix B. |
| NOTE: | LSET or RSET may also be used with a non-fielded string variable to left-justify or right-justify a string in a given field. For example, the program lines |

```
110 AS=SPACES(20)
120 RSET A$=N$
```

right justify the string $N \$$ in a 20-character field. This can be very handy for formatting printed output.

### 2.38 MERGE

```
FORMAT: MERGE<filename>
```

VERSION: Disk

PURPOSE: $\quad$ To merge a specified disk file into the program currently in memory.

REMARKS: <filename> is the name used when the file was SAVEd. (With CP/M, the default extension .BAS is supplied.) The file must have been SAVEd in ASCII format. (If not, a "Bad file mode" error occurs.)

If any lines in the disk file have the same line numbers as lines in the program in memory, the lines from the file on disk will replace the corresponding lines in memory. (MERGEing may be thought of as "inserting" the program lines on disk into the program in memory.)
BASIC-80 always returns to command level after executing a MERGE command.
EXAMPLE: MERGE "NUMBRS"

### 2.39 MIDS

FORMAT:
MID\$(<string $\exp 1>, n[, m])=<$ string $\operatorname{exp2>}$
where $n$ and $m$ are integer expressions and <string exp1> and<string exp2> are string expressions.

VERSIONS:
PURPOSE:
Extended, Disk
To replace a portion of one string with another string.
REMARKS: The characters in <string exp1>, beginning at position $n$, are replaced by the characters in <string exp2>. The optional $m$ refers to the number of characters from <string exp2> that will be used in the replacement. If $m$ is omitted, all of <string exp2> is used. However, regardless of whether $m$ is omitted or included, the replacement of characters never goes beyond the original length of <string exp1>.

EXAMPLE:
10 A $\$=" K A N S A S$ CITY, MO"
20 MID\$(A\$, 14)="KS"
30 PRINT AS
RUN
KANSAS CITY, KS
MID\$ may also be used as a function that returns a substring of a given string. See Section 3.24.

### 2.40 NAME

| FORMAT: | NAME <old filename> AS <new filename> |
| :--- | :--- |
| VERSION: | Disk |
| PURPOSE: | To change the name of a dlsk file. |
| REMARKS: | <old filename>must exist and <new filename> must not exist; otherwise an error will <br> result. After a NAME command, the file exists on the same disk, in the same area of disk <br> space, with the new name. |
| EXAMPLE: | Ok <br> $\quad$NAME "ACCTS" AS "LEDGER" <br> OK |

In this example, the file that was formerly named ACCTS will now be named LEDGER.

### 2.41 NEW

| FORMAT: | $\mathrm{NEW}_{i}$ |
| :--- | :--- |
| VERSIONS: | 8 K, Extended, Disk |

PURPOSE: To delete the program currently in memory and clear all variables.
REMARKS: NEW is entered at command level to clear memory before entering a new program. BASIC-80 always returns to command level after a NEW is executed.

### 2.42 NULL

FORMAT: NULL<integer expression>
VERSIONS: $\quad 8 K$, Extended, Disk
PURPOSE: $\quad$ To set the number of nulls to be printed at the end of each line.
REMARKS: For 40 -character-per-second tape punches, <integer expression> should be >=3. When tapes are not being punched. <integer expression> should be 0 or 1 for Teletypes and Teletype-compatible CRTs. <integer expression> should be 2 or 3 for 30 cps hard copy printers. The default value is 0 .

EXAMPLE: Ok
NULL 2
Ok
100 INPUT X
200 IF X<50 GOTO 800
-
-
-
Two null characters will be printed after each line.

### 2.43 ON ERROR GOTO

FORMAT:
VERSIONS:
PURPOSE:
REMARKS:

ON ERROR GOTO <line number>
Extended, Disk
To enable error trapping and specify the first line of the error handling subroutine.
Once error trapping has been enabled all errors detected, including direct mode errors (e.g., Syntax errors), will cause a jump to the specified error handling subroutine. If <line number> does not exist, an "Undefined line" error results. To disable error trapping. execute an ON ERROR GOTO O. Subsequent errors will print an error message and halt execution. An ON ERROR GOTO 0 statement that appears in an error trapping subroutine causes BASIC-80 to stop and print the error message for the error that caused the trap. It is recommended that all error trapping subroutines execute an ON ERROR GOTO 0 if an error is encountered for which there is no recovery action.

| NOTE: | If an error occurs during execution of an error handing subroutine, the BASIC error <br> message is printed and execution terminates. Error trapping does not occur within the <br> error handling subroutine. |
| :--- | :--- |
| EXAMPLE: | 10 ON ERROR GOTO 1000 |

### 2.44 ON . . . GOSUB AND ON . . . GOTO

FORMAT: $\quad$ ON <expression > GOTO<list of line numbers>
ON <expression> GOSUB <list of line numbers>
VERSIONS: 8K, Extended, Disk
PURPOSE: To branch to one of several specified line numbers, depending on the value returned when an expression is evaluated.

REMARKS: The value of <expression> determines which line number in the list will be used for branching. For example, if the value is three, the third line number in the list will be the destination of the branch. (If the value is a non-integer, the fractional portion is rounded.)

In the ON . . . GOSUB statement, each line number in the list must be the first line number of a subroutine.

If the value of <expression> is negative, zero or greater than the number of items in the list, an "lllegal function call" error occurs.

EXAMPLE: 100 ON L-1 GOTO 150,300,320,390

### 2.45 OPEN

FORMAT:
VERSIONS:
OPEN <mode>,[\#]<file number>,<filename>, [<reclen>]

PURPOSE:
REMARKS:

To allow liO to a disk file.
A disk file must be OPENed before any disk I/O operation can be performed on that file. OPEN allocates a buffer for I/O to the file and determines the mode of access that will be used with the buffer.
<mode> is a string expression whose first character is one of the following:
O specifies sequential output mode
1 specifies sequential input mode
$R \quad$ specifies random input/output mode
<ile number> is an integer expression whose value is between one and fifteen. The number is then associated with the file for as long as it is OPEN and is used to refer other disk I/O statements to the file.
<filename> is a string expression containing a name that conforms to your operating system's rules for disk filenames.
<reclen> is an integer expression which, if included, sets the record length for random files. The default record length is 128 bytes. See also page A-3.

NOTE: A file can be OPENed for sequential input or random access on more than one file number at a time. A file may be OPENed for output, however, on only one file number at a time.

EXAMPLE:
10 OPEN "I",2,"INVEN"
See also Appendix B.

### 2.46 OPTION BASE

```
FORMAT: OPTION BASE n
    where n is 1 or 0
VERSIONS: Extended,Disk
PURPOSE: To declare the minimum value for array subscripts.
REMARKS: The default base is 0. If the statement
OPTION BASE 1
```

is executed, the lowest value an array subscript may have is one.

### 2.47 OUT

FORMAT:

VERSIONS:
PURPOSE:
REMARKS: The integer expression $I$ is the port number, and the integer expression $J$ is the data to be transmitted.
OUT I.J
where $I$ and $J$ are integer expressions in the range 0 to 255.

### 2.48 POKE

FORMAT:

VERSIONS:
PURPOSE:
REMARKS:

100 OUT 32,100

POKE I.J
where $I$ and $J$ are integer expressions
8K, Exiended, Disk
To write a byte into a memory location.
The integer expression $I$ is the address of the memory location to be POKEd. The integer expression $J$ is the data to be POKEd. J must be in the range 0 to 255 . In the 8 K version, $I$ must be less than 32768. In the Extended and Disk versions. I must be in the range 0 to 65536.

With the $8 K$ version, data may be POKEd into memory locations above 32768 by supplying a negative number for 1 . The value of 1 is computed by subtracting 65536 from the desired address. For example, to POKE data into location 45000. $1=45000-65536$, or -20536 .

The complementary function to POKE is PEEK. The argument to PEEK is an address from which a byte is to be read. See Section 3.27.

POKE and PEEK are useful for efficient data storage, loading assembly language subroutines, and passing arguments and results to and from assembly language subroutines.

```
EXAMPLE: 10 POKE &H5A00.&HFF
```


### 2.49 PRINT

FORMAT:
VERSIONS: PURPOSE:

REMARKS:

PRINT [<list of expressions>]
8K, Extended Disk
To output data at the terminal.
If <list of expressions> is omitted, a blank line is printed. If <list of expressions> is included, the values of the expressions are printed at the terminal. The expressions in the list may be numeric and/or string expressions. (Strings must be enclosed in quotation marks.)

## Print Positions

The position of each printed item is determined by the punctuation used to separate the items in the list. BASIC-80 divides the line into print zones of 14 spaces each. In the list of expressions, a comma causes the next value to be printed at the beginning of the next zone. A semicolon causes the next value to be printed immediately after the last value. Typing one or more spaces between expressions has the same effect as typing a semicolon.

If a comma or a semicolon terminates the list of expressions, the next PRINT statement begins printing on the same line, spacing accordingly. If the list of expressions terminates without a comma or a semicolon, a carriage return is printed at the end of the line. If the printed line is longer than the terminal width, BASIC-80 goes to the next physical line and continues printing.

Printed numbers are always followed by a space. Positive numbers are preceded by a space. Negative numbers are preceded by a minus sign. Single precision numbers that can be represented with 6 or fewer digits in the unscaled format no less accurately than they can be represented in the scaled format, are output using the unscaled format. For example, $10 \wedge(-6)$ is output as .000001 and $10 \wedge(-7)$ is output as $1 E-7$. Double precision numbers that can be represented with 16 or fewer digits in the unscaled format no less accurately than they can be represented in the scaled format, are output using the unscaled format. For example, $10 \wedge(-16)$ is output as .0000000000000001 and $10 \wedge(-17)$ is output as 10-17.

A question mark may be used in place of the word PRINT in a PRINT statement.

Rev. 5.0-A 1/1/80

## EXAMPLE 1: $\quad 10 \times=5$

20 PRINT X+5, X-5, X* $(-5), X \wedge 5$
30 END
RUN
10 0 $\quad-25 \quad 3125$

Ok
In this example, the commas in the PRINT statement cause each value to be printed at the beginning of the next print zone.

EXAMPLE 2: LIST
10 INPUT X
20 PRINT X "SQUARED IS" Xへ2 "AND";
30 PRINT X "CU8ED IS " XA3
40 PRINT
50 GOTO 10
OK
RUN
? 9
9 SQUARED IS 81 AND 9 CUBED IS 729
? 21
21 SQUARED IS 441 AND 21 CUBED IS 9261
?
In this example, the semicolon at the end of line 20 causes both PRINT statements to be printed on the same line, and line 40 causes a blank line to be printed before the next prompt.

EXAMPLE 3: $\quad 10$ FOR $X=1$ TO 5
$20 \mathrm{~J}=\mathrm{J}+5$
$30 K=K+10$
40 ? J;K;
50 NEXT X
Ok
RUN
$\begin{array}{llllllllll}5 & 10 & 10 & 20 & 15 & 30 & 20 & 40 & 25 & 50\end{array}$
Ok
In this example, the semicolons in the PRINT statement cause each value to be printed immediately after the preceding value. (Don't forget, a number is always followed by a space and positive numbers are preceded by a space.) In line 40 , a question mark is used instead of the word PRINT.

### 2.50 PRINT USING

FORMAT:
VERSIONS:
PRINT USING<"format string">:<list of expressions>
Extended, Disk

PURPOSE: To print strings or numbers using a specified format.
REMARKS <list of expressions> is comprised of the string expressions or numeric expressions that AND EXAMPLES: are to be printed, separated by semicolons. <"format string">, enciosed in quotation marks. is comprised of special formatting characters. These formatting characters (see below) determine the field and the format of the printed strings or numbers.

## String Fields

When PRINT USING is used to print strings, one of three formatting characters may be used to format the string field:

Specifies that only the first character in the given string is to be printed.
" $\backslash n$ spaces $\backslash$ " Specifies that $2+n$ characters from the string are to be printed. If the backsiashes are typed with no spaces, two characters will be printed; with one space, three characters will be printed, and so on. If the string is longer than the field, the extra characters are ignored. If the field is longer than the string, the string will be left-justified in the field and padded with spaces on the right. Example:

```
10 AS="LOOK":B$="OUT"
```

30 PRINT USING "!";A\$;B\$
40 PRINT USING " $\$ " ${ }^{\prime \prime}$ AS;BS
50 PRINT USING " $\ \backslash$ "; $\$$; $B \$$ :"!!"
RUN

LO
LOOKOUT
LOOK OUT !! •
" $\&$ " Specifies a variable length string field. When the fieid is specified with " $\&$ ", the string is output exactly as input. Example:

```
10 AS="LOOK":BS="OUT"
20 PRINT USING "!";AS;
30 PRINT USING "&";B$
RUN
LOUT
```


## Numeric Fields

When PRINT USING is used to print numbers, the following special characters may be used to format the numeric field:

A number sign is used to represent each digit position. Digit positions are always filled. If the number to be printed has fewer digits than positions specified, the number will be right-justified (preceded by spaces) in the field.

A decimal point may be inserted at any position in the field. If the format string specifies that a digit is to precede the decimal point, the digit will always be printed (as 0 if necessary). Numbers are rounded as necessary.

PRINT USING "\#\#.\#\#";. 78
0.78

PRINT USING "\#\#\#.\#\#";987.654
987.65

| PRINT USING | "\#\#, \#\# | $" ; ~ 10.2,5.3,66.789, .234$ |  |
| :--- | :---: | :---: | :---: |
| 10.20 | 5.30 | 66.79 | 0.23 |

In the last example, three spaces were inserted at the end of the format string to separate the printed values on the line.

M ( Four carats (or up-arrows) may be placed after the digit position characters to specify exponential format. The four carats allow space for $E+x x$ to be printed. Any decimal point position may be specified. The significant digits are left-justified, and the exponent is adjusted. Unless a leading + or trailing + or - is specified, one digit position will be used to the left of the decimal point to print a space or a minus sign.

```
PRINT USING "##.##^ヘ人N":234.56
    2.35E+02
PRINT USING ".####^^人^-";888888
    .8889E+06
PRINT USING "+.##^人^^";123
+.12E+03
```

An unders
PRINT USING " 1 1\#\#.\#\#_1";12.34
!12.34!

The literal character itself may be an underscore by placing＂＿－＂in the format string．
If the number to be printed is larger than the specified numeric field，a percent sign is printed in front of the number．If rounding causes the number to exceed the field．a percent sign will be printed in front of the rounded number．
PRINT USING＂\＃\＃．\＃\＃＂；111．22
\％111．22
PRINT USING＂．\＃\＃＂；． 999
\％1．00
If the number of digits specified exceeds 24 ，an＂Illegal function call＂error will result．

## 2．51 PRINT\＃AND PRINT\＃USING

FORMAT：PRINT\＃＜filenumber＞，［USING＜＂format string＂＞；］＜list exps＞
VERSIONS：Disk
PURPOSE：To write data to a sequential disk file．
REMARKS：＜filenumber＞is the number used when the file was OPENed for output．＜＂format string＂$>$ is comprised of formatting characters as described in Section 2．50．PRINT USING．The expressions in＜list of expressions＞are the numeric and／or string expressions that will be written to the file．
PRINT\＃does not compress data on the disk．An image of the data is written to the disk，just as it would be displayed on the terminal with a PRINT statement．For this reason，care should be taken to delimit the data on the disk，so that it will be input correctly from the disk．

In the list of expressions，numeric expressions should be delimited by semicolons．For example，
$\sqrt{[P R I N T \# 1, A ; B ; C ; X ; Y ; Z}$
（If commas are used as delimiters，the extra blanks that are inserted between print fields will also be written to disk．）

String expressions must be separated by semicolons in the list. To format the string expressions correctly on the disk, use explicit delimiters in the list of expressions.

For example, let $A S=" C A M E R A "$ and $B S=" 93604-1 "$. The statement
PRINT\#1,AS;BS
would write CAMERA93604-1 to the disk. Because there are no delimiters, this could not be input as two separate strings. To correct the problem, insert explicit delimiters into the PRINT\# statement as follows:

PRINT\#1,AS;"",",B\$
The image written to disk is
CAMERA,93604-1
which can be read back into two string variables.
If the strings themselves contain commas, semicolons, significant leading blanks, carriage returns, or line feeds, write them to disk surrounded by explicit quotation marks, CHRS(38).

For example, let $A \$=" C A M E R A, A U T O M A T I C "$ and $B S=" \quad 93604-1 "$. The statement

## PRINT\#1,AS;BS

would write the following image to disk:
CAMERA, AUTOMATIC 93604-1
and the statement
INPUT\#1,A\$,BS
would input "CAMERA" to AS and "AUTOMATIC 93604-1" to BS. To separate these strings properly on the disk, write double quotes to the disk image using CHRS(34). The statement

PRINT\#1,CHR\$(34);A\$;CHRS(34);CHRS(34);BS;CHR\$(34)
writes the following image to disk:
"CAMERA, AUTOMATIC" " 93604-1"
and the statement
INPUT\#1,AS,BS
would input "CAMERA, AUTOMATIC" to AS and " 93604-1" to BS.
The PRINT\# statement may also be used with the USING option to control the format of the disk file. For example:

## PRINT\#1,USING"'SS\#\#\#.\#\#,":J;K;L

For more examples using PRINT\#, see Appendix B.
See also WRITE\#, Section 2.68.

### 2.52 PUT

| FORMAT: | PUT $[\#]<$ file number $>[$, <record number $>]$ |
| :--- | :--- |
| VERSION: | Disk |
| PURPOSE: | To write a record from a random buffer to a random disk file. |
| REMARKS: | <file number $>$ is the number under which the file was OPENed. If <record number $>$ is <br> omitted, the record will nave the next available record number (after the last PUT). The <br> largest possible record number is 32767. |
| EXAMPLE: | See Appendix $B$. |

### 2.53 RANDOMIZE

| FORMAT: | RANDOMIZE $[$ <expression>] |
| :--- | :--- |
| VERSIONS: | Extended, Disk |
| PURPOSE: | To reseed the random number generator. |
| REMARKS: | If <expression> is omitted, BASIC- 80 suspends program execution and asks for a value <br> by printing. |

Random Number Seed ( -32768 to 32767 )?
before executing RANDOMIZE.
If the random number generator is not reseeded, the RND function returns the same sequence of random numbers each time the program is RUN. To change the sequence of random numbers every time the program is RUN, place a RANDOMIZE statement at the beginning of the program and change the argument with each RUN.

EXAMPLE: 10 RANDOMIZE
20 FOR I=1 TO 5
30 PRINT RND;
40 NEXT I
RUN
Random Number Seed (-32768 to 32767)? 3 (user types 3)
.88598 . 484668 . 586328 . 119426 . 709225
Ok
RUN
Random Number Seed ( -32768 to 32767 )? 4 (user types 4 for new sequence) .803506 . 162462 . 929364 . 292443 . 322921
OK
RUN
Random Number Seed ( -32768 to 32767) ? 3 (same sequence as first RUN) .88598 . 484668 . 586328 . 119426 . 709225
OK
NOTE:
With the BASIC Compiler, the prompt given by RANDOMIZE is:
Random Number Seed ( -32768 to 32767 )?

### 2.54 READ

FORMAT:
READ <list of variables>
VERSIONS: 8K, Extended, Disk
PURPOSE: To read values from a DATA statement and assign them to variables. (See DATA, Section 2.10.)

REMARKS: A READ statement must always be used in conjunction with a DATA statement. READ statements assign variables to DATA statement values on a one-to-one basis. READ statement variables may be numeric or string, and the values read must agree with the variable types specified. If they do not agree, a "Syntax error" will result.

A single READ statement may access one or more DATA statements (they will be accessed in order), or several READ statements may access the same DATA statement. If the number of variables in <list of variables> exceeds the number of elements in the DATA statement(s), an OUT OFDATA message is printed. If the number of variables specified is fewer than the number of elements in the DATA statement(s), subsequent READ statemenis will begin reading data at the first unread element. If there are no subsequent READ statements, the extra data is ignored.

To reread DATA statements from the start, use the RESTORE statement (see RESTORE, Section 2.57).

```
EXAMPLE 9: -
80 FOR I=1 TO 10
90 READ A(1)
100 NEXT I
110 DATA 3.08,5.19,3.12,3.98,4.24
120 OATA 5.08,5.55,4.00,3.16,3.37
    。
    \bullet
    \bullet
```

This program segment READs the values from the DATA statements into the array A. After execution, the value of $A(1)$ will be 3.08 , and so on.

EXAMPLE 2: LIST
10 PRINT "CITY", "STATE", "ZIP"
20 READ C\$.S\$.Z
30 DATA "DENVER,", COLORADO, 80211
40 PRINT CS.SS.Z
Ok
RUN
CITY STATE ZIP
DENVER, COLORADO 80211
OK
This program READs string and numeric data from the DATA statement in line 30.
FORMAT: REM <remark>

VERSIONS: 8K, Extended, Disk
PURPOSE: To allow explanatory remarks to be inserted in a program.
REMARKS: REM statements are not executed but are output exactly as entered when the program is listed.

REM statements may be branched into (from a GOTO or GOSUB statement), and execution will continue with the first executable statement after the REM statement.

In the Extended and Disk versions, remarks may be added to the end of a line by preceding the remark with a single quotation mark instead of :REM.

## EXAMPLE:

### 2.56 RENUM

FORMAT: $\quad$ RENUM [[<new number>]l.[<old number>][.<increment>] $]$ ]
VERSIONS: Extended. Disk
PURPOSE: To renumber program lines.
REMARKS: <new number> is the first line number to be used in the new sequence. The default is 10. <old number> is the line in the current program where renumbering is to begin. The default is the first line of the program. <increment> is the increment to be used in the new sequence. The default is 10.

RENUM also changes all line number references following GOTO, GOSUB, THEN, ON . . GOTO, ON . . GOSUB and ERL statements to reflect the new line numbers. If a

NOTE:

EXAMPLE:

### 2.57 RESTORE

FORMAT: RESTORE [<line number>]
VERSIONS:
PURPOSE: To allow DATA statements to be reread from a specified point.
REMARKS: After a RESTORE statement is executed, the next READ statement accesses the first item in the first DATA statement in the program. If <line number> is specified, the next READ statement accesses the first item in the specified DATA statement.

EXAMPLE: $\quad 10$ READ A,B,C
20 RESTORE
30 READ D,E.F
40 DATA 57, 68, 79
-
.
0

### 2.58 RESUME

## FORMAT:

VERSIONS:
PURPOSE:
REMARKS:
RENUM cannot be used to change the order of program lines (for example, RENUM 15,30 when the program has three lines numbered 10,20 and 30 ) or to create line numbers greater than 65529. An "lllegal function call" error will result.

RENUM

RENUM 300,50 Renumbers the entire program. The first new line number will be 300 . Lines will increment by 50 .

RENUM $1000,900,20$ Renumbers the lines from 900 up so they start with line number 1000 and increment by 20.
nonexistent line number appears after one of these statements, the error message "Undefined line $x x x x x$ in yyyyy" is printed. The incorrect line number reference ( $x \times x \times x$ ) is not changed by RENUM, but line number yyyy may be changed.

```
RESUME Execution resumes at the statement which caused the error.
```


## or

```
RESUME 0
RESUME NEXT Execution resumes at the statement immediately following the one which caused the error.
RESUME <line number> Execution resumes at <line number>.
A RESUME statement that is not in an error trap routine causes a "RESUME without error" message to be printed.
EXAMPLE:
10 ON ERROR GOTO 900
-
-
900 IF (ERR=230)AND(ERL=90) THEN PRINT "TRY AGAIN":RESUME 80
-
-
-
```


### 2.59 RUN

FORMAT 1: RUN [<line number>]
VERSIONS: $\quad 8 K$, Extended, Disk
PURPOSE:
To execute the program currently in memory:
REMARKS: If<line number>is specified, execution begins on that line. Otherwise, execution begins at the lowest line number. BASIC-80 always returns to command level after a RUN is executed.

EXAMPLE: RUN
FORMAT 2: $\quad$ RUN $<$ filename $>[, R]$
VERSION: Disk
PURPOSE: To load a file from disk into memory and run it.
REMARKS: <filename> is the name used when the file was SAVEd. The default extension.BAS is supplied.

RUN closes all open files and deletes the current contents of memory before loading the designated program. However, with the "R" option, all data files remain OPEN.

EXAMPLE: RUN "NEWFIL",R
See also Appendix B.

### 2.60 SAVE

$$
\begin{array}{ll}
\text { FORMAT: } & \text { SAVE <filename }>[, A \mid, P] \\
\text { VERSION: } & \text { Disk }
\end{array}
$$

## PURPOSE:

REMARKS: <filename> is a quoted string that conforms to your operating sytem's requirements for filenames. (With CP/M, the default extension .BAS is supplied.) If <filename> already exists, the file will be written over.

Use the A option to save the file in ASCII format. Otherwise. BASIC saves the file in a compressed binary format. ASCII format takes more space on the disk, but some disk access requires that files be in ASCII format. For instance, the MERGE command requires an ASCII format file, and some operating system commands may require an ASCII format file.

Use the $P$ option to protect the file by saving it in an encoded binary format. When a protected file is later RUN (or LOADed), any attempt to list or edit it will fail.

## EXAMPLE: SAVE"COM2",A

SAVE"PROG",P
See also Appendix 8.

### 2.61 STOP

FORMAT:
VERSIONS:

REMARKS: STOP statements may be used anywhere in a program to terminate execution. When a STOP is encountered, the following message is printed:

Break in line nnnnn
Unlike the END statement, the STOP statement does not close files.
BASIC-80 always returns to command level after a STOP is executed. Execution is resumed by issuing a CONT command (see Section 2.8).
EXAMPLE: $\quad 10$ INPUT A,B,C
$20 \mathrm{~K}=\mathrm{A} \wedge 2^{*} 5.3: \mathrm{L}=\mathrm{B} \wedge 3 / .26$
30 STOP
$40 \mathrm{M}=\mathrm{C}^{*} \mathrm{~K}+100$ :PRINT M
RUN
? 1,2,3
BREAK IN 30
Ok
PRINTL
30.7692

OK

CONT
115.9

Ok

### 2.62 SWAP

```
FORMAT: SWAP <variable>.<variable>
VERSIONS: Extended, Disk
PURPOSE: To exchange the values of two variables.
REMARKS: Any type variable may be SWAPped (integer, single precision, double precision, string),
but the two variables must be of the same type or a "Type mismatch" error results.
EXAMPLE: LIST
    10 AS=" ONE ":BS=" ALL ":CS="FOR"
    20 PRINT AS CS B$
    30 SWAP AS, BS
    40 PRINT AS C$ B$
    RUN
    Ok
    ONE FOR ALL
    ALL FOR ONE
    Ok
```


### 2.63 TRON/TROFF

FORMAT: TRON
TROFF
VERSIONS: Extended, Disk
PURPOSE: To trace the execution of program statements.
REMARKS: As an aid in debugging, the TRON statement (executed in either the direct or indirect mode) enables a trace flag that prints each line number of the program as it is executed. The numbers appear enclosed in square brackets. The trace flag is disabled with the TROFF statement (or when a NEW command is executed).

EXAMPLE: TRON
Ok
LIST
$10 \mathrm{~K}=10$
20 FOR J=1 TO 2
$30 \mathrm{~L}=\mathrm{K}+10$
40 PRINTJ:K;L
$50 \mathrm{~K}=\mathrm{K}+10$
60 NEXT
70 END
Ok

RUN

| $[10][20][30][40]$ | 1 | 10 | 20 |
| :--- | :--- | :--- | :--- |
| $[50][60][30][40]$ | 2 | 20 | 30 |
| $[50][60][70]$ |  |  |  |
| Ok |  |  |  |
| TROFF |  |  |  |
| Ok |  |  |  |

### 2.64 WAIT

FORMAT: $\quad$ WAIT <port number $>$, I[,J] where $I$ and $J$ are integer expressions

VERSIONS: 8K, Extended, Disk
PURPOSE: To suspend program execution while monitoring the status of a machine input port.
REMARKS: The WAIT statement causes execution to be suspended until a specified machine input pori develops a specified bit pattern. The data read at the port is exclusive OR'ed with the integer expression J. and then AND'ed with I. If the result is zero, BASIC-80 loops back and reads the data at the port again. If the result is nonzero, execution continues with the next statement. If J is omitted, it is assumed to be zero.

CAUTION: It is possible to enter an infinite loop with the WAIT statement, in which case it will be necessary to manually restart the machine.

EXAMPLE: 100 WAIT 32,2

### 2.65 WHILE...WEND

FORMAT: WHILE<exppession>
-
-
[<loop statements>]
-
-
WEND
VERSIONS: Extended, Disk
PURPOSE:
REMARKS: If <expression> is not zero (i.e., true), <loop statements> are executed until the WEND statement is encountered. BASIC then returns to the WHILE statement and checks <expression>. If it is still true, the process is repeated. If it is not true, execution resumes with the statement following the WEND statement.

WHILE/WEND loops may be nested to any level. Each WEND will match the most recent WHILE. An unmatched WHILE statement causes a "WHILE without WEND" error, and an unmatched WEND statement causes a "WEND without WHILE" error.

```
EXAMPLE: 90 BUBBLE SORT ARRAY AS
100 FLIPS=1 'FORCE ONE PASS THRU LOOP
110 WHILE FLIPS
115 FLIPS=0
120 FOR I=1 TO J-1
                                    IF AS(I)>AS(1+1) THEN SWAP AS(I),A$(1+1):FLIPS=1
140 NEXT I
150 WEND
```


### 2.66 WIDTH

FORMAT: WIDTH [LPRINT]<integer expression>
VERSIONS: Extended, Disk
PURPOSE
REMARKS: If the LPRINT option is omitted, the line width is set at the terminal. If LPRINT is included, the line width is set at the line printer.
<integer expression> must have a value in the range 15 to 255 . The default width is $\mathbf{7 2}$ characters.

If <integer expression> is 255 , the line width is "infinite," that is, BASIC never inserts a carriage return. However, the position of the cursor or the print head, as given by the POS or LPOS function, returns to zero after position 255.


FORMAT:
VERSION:
PURPOSE:
REMARKS:

EXAMPLE:

WRITE[<list of expressions>]
Disk
To output data at the terminal
If <list of expressions> is omitted, a blank line is output. If <list of expressions> is included, the values of the expressions are output at the terminal. The expressions in the list may be numeric and/or string expressions, and they must be separated by commas.

When the printed items are output, each item will be separated from the last by a comma. Printed strings will be delimited by quotation marks. After the last item in the list is printed, BASIC inserts a carriage return/line feed.

WRITE outputs numeric values using the same format as the PRINT statement. Section 2.49.
$10 A=80: B=90: C \$=T H A T ' S A L L$
20 WRITE A.B.C\$
RUN
80. 90,"THAT'S ALL"

Ok

### 2.68 WRITEH

FORMAT:
VERSION:
PURPOSE:
REMARKS: <file number> is the number under which the file was OPENed in "O" mode. The expressions in the list are string or numeric expressions, and they must be separated by commas.

The difference between WRITE\# and PRINT\# is that WRITE\# inserts commas between the items as they are written to disk and delimits strings with quotation marks. Therefore, it is not necessary for the user to put explicit delimiters in the list. A carriage return/line feed sequence is inserted after the last item in the list is written to disk.

EXAMPLE: Let $A \$=" C A M E R A "$ and $B \$=" 93604-1 "$. The statement:

## WRITE\#1,A\$,BS

writes the following image to disk:
"CAMERA","93604-1"
A subsequent INPUT\# statement, such as:
INPUT\#1,A\$,B\$
would input "CAMERA" to A\$ and "93604-1" to BS.

## CHAPTER 3

## BASIC-80 FUNCTIONS

The intrinsic functions provided by BASIC-80 are presented in this chapter. The functions may be called from any program without further definition.

Arguments to functions are always enclosed in parentheses. In the formats given for the functions in this chapter, the arguments have been abbreviated as follows:

```
X and Y Represent any numeric expressions
I and J Represent integer expressions
XS and YS Represent string expressions
```

If a floating point value is supplied where an integer is required, BASIC-80 will round the fractional portion and use the resulting integer.

### 3.1 ABS

FORMAT: $\quad A B S(X)$
VERSIONS: $8 K$, Extended, Disk
ACTION: Returns the absolute value of the expression $X$.
EXAMPLE:
PRINT ABS(7* (-5))
35
Ok

### 3.2 ASC

FORMAT:
VERSIONS:
ACTION:

EXAMPLE:

ASC(X\$)
8K, Extended, Disk
Returns a numerical value that is the ASCII code of the first character of the string $X \$$. (See Appendix $L$ for $A S C I I$ codes.) If $X \$$ is null, an "Illegal function call" error is returned.
$10 \times \$=" T E S T "$
20 PRINT ASC(X\$)
RUN
84
Ok
See the CHRS function for ASCII-to-string conversion.

### 3.3 ATN

| FORMAT: | ATN $(X)$ |
| :--- | :--- |
| VERSIONS: |  |
| IK, Extended, Disk |  |

ACTION:

EXAMPLE: 10 INPUT X
20 PRINT ATN(X)
RUN
? 3
1.24905

Ok
3.4 CDBL

FORMAT:
VERSIONS:
ACTION: Converts $X$ to a double precision number.
EXAMPLE: $\quad 10 \mathrm{~A}=454.67$
20 PRINT A;CDBL(A)
RUN
$454.67 \quad 454.6700134277344$
Ok

### 3.5 CHRS

FORMAT
VERSIONS: 8K, Extended, Disk
ACTION: Returns a string whose one element has ASCII code I. (ASCII codes are listed in Appendix L.) CHR\$ is commonly used to send a special character to the terminal. For instance, the BEL character could be sent (CHRS(7)) as a preface to an error message, or a form feed could be sent (CHR\$(12)) to clear a CRT screen and return the cursor to the home position.

EXAMPLE: PRINT CHRS(66)
B
Ok
See the ASC function for ASCII-to-numeric conversion.

### 3.6 CINT

FORMAT:
VERSIONS:
ACTION:

EXAMPLE:
$\operatorname{CINT}(X)$
Extended, Disk
Converts $X$ to an integer by rounding the fractional portion. If $X$ is not in the range -32768 to 32767, an "Overflow" error occurs.

PRINT CINT (45.67)
46
Ok
See the CDBL and CSNG functions for converting numbers to the double precision and single precision data type. See also the FIX and INT functions, both of which return integers.

### 3.7 COS

FORMAT:
VERSIONS:
ACTION:

EXAMPLE:

### 3.8 CSNG

FORMAT:
VERSIONS:
ACTION:
EXAMPLE:
$\cos (x)$
8X, Extended, Disk
Returns the cosine of $X$ in radians. The calculation of $\operatorname{COS}(X)$ is performed in single precision.
$10 x=2^{\prime \prime} \cos (.4)$ 20 PRINT X
RUN
1.84212

Ok
$\operatorname{CSNG}(X)$
Extended, Disk
Converts $X$ to a single precision number.
$10 \mathrm{~A} \#=975.3421$ \#
20 PRINT A\#: CSNG(A\#)
RUN
$975.3421 \quad 975.342$
Ok
See the CINT and CDBL functions for converting numbers to the integer and double precision data types.

### 3.9 CVI, CVS, CVD

```
FORMAT: CVI(<2-byte string>)
    CVS(<4-byte string>)
    CVD(<8-byte string>)
VERSION: Disk
```

ACTION: Convert string values to numeric values. Numeric values that are read in from a random disk file must be converted from strings back into numbers. CVI converts a 2-byte string to an integer..CVS converts a 4-byte string to a single precision number. CVD converts an 8 -byte string to a double precision number.

## EXAMPLE:

```
*
    *
70 FIELD #1,4 AS N$, 12 AS B$, . . .
80 GET #1
90 Y=CVS(N$)
    O
    0
    -
```

See also MKI\$, MKS\$. MKD\$, Section 3.25 and Appendix B.

### 3.10 EOF

FORMAT:
VERSION:
ACTION:

EXAMPLE:

EOF(<file number>)
Disk
Returns - 1 (true) if the end of a sequential file has been reached. Use EOF to test for end-of-file while INPUTting, to avoid "Input past end" errors.

10 OPEN " 1 ", $1, " D A T A "$
$20 \mathrm{C}=0$
30 IF EOF(1) THEN 100
40 INPUT \#1,M(C)
$50 \mathrm{C}=\mathrm{C}+1$ :GOTO 30
-
-
-
3.11 EXP

FORMAT:
VERSIONS:
ACTION:

EXP(X)
8K, Extended, Disk
Returns e to the power of X. X must be <=87.3365. If EXP overflows, the "Overflow" error message is displayed, machine infinity with the appropriate sign is supplied as the result. and execution continues.

```
EXAMPLE: }\quad10X=
    20 PRINT EXP (X-1)
    RUN
    54.5982
Ok
```

3.12 FIX

FORMAT: FIX(X)
VERSIONS: Extended, Disk
ACTION: Returns the truncated integer part of $X$. $F I X(X)$ is equivalent to $\operatorname{SGN}(X)$ " $\operatorname{INT}(A B S(X))$. The major difference between FIX and INT is that FIX does not return the next lower number for negative $X$.

EXAMPLE: PRINT FIX(58.75)

## 58

Ok
PRINT FIX (-58.75)
-58
Ok

### 3.13 FRE

| FORMAT: | $\operatorname{FRE}(0)$ |
| :--- | :--- |
|  | $\operatorname{FRE}(X \$)$ |

VERSIONS: 8K, Extended, Disk

ACTION:

EXAMPLE: PRINT FRE(0)
14542
Ok

### 3.14 HEXS

FORMAT: HEX\$(X)
VERSIONS: Extended, Disk
ACTION:

EXAMPLE:
Returns a string which represents the hexadecimal value of the decimal argument. $X$ is rounded to an integer before $H E X \$(X)$ is evaluated.

10 INPUT X
$20 \mathrm{AS}=\mathrm{HEX}(\mathrm{X})$
30 PRINT X "DECIMAL IS " AS " HEXADECIMAL"

RUN
? 32
32 DECIMAL IS 20 HEXADECIMAL
Ok
See the OCTS function for octal conversion.

### 3.14a INKEYS

| FORMAT: | INKEYS |
| :---: | :---: |
| ACTION: | Returns either a one character string containing a character read from the terminal or a null string if no character is pending at the terminal. No characters will be echoed and all characters are passed through to the program except for Control-C which terminates the program. (In the compiler version Control-C is also passed through to the program.) |
| EXAMPLE: | 1000 'Timed Input Subroutine |
|  | 1010 RESPONSESS $=\times \cdots$ |
|  | 1020 FOR $1 \%=1$ TO TIMELIMIT\% |
|  | 1030 A $=1$ NKEY\$:IF LEN(A\$)=0 THEN 1060 |
|  | 1040 IF ASC(AS) $=13$ THEN TIMEOUT $\%=0$ :RETURN |
|  | 1050 REPSONSE\$=RESPONSES+AS |
|  | 1060 NEXT $1 \%$ |
|  | 1070 TIMEOUT\% $\%$ 1:RETURN |

### 3.15 INP

FORMAT:
VERSIONS:
ACTION:

EXAMPLE: $\quad 100 \mathrm{~A}=\operatorname{INP}(255)$

### 3.16 INPUT\$

FORMAT: INPUT\$(XI,[\#]Y])

VERSIONS: Disk
ACTION:

EXAMPLE 1:
Returns a string of $X$ characters, read from the terminal or from file number $Y$. If the terminal is used for input, no characters will be echoed and all control characters are passed through except Control-C, which is used to interrupt the execution of the INPUTS function.

5 'LIST THE CONTENTS OF A SEQUENTIAL FILE IN HEXADECIMAL
10 OPEN"I",1,"DATA"
20 IF EOF (1) THEN 50
30 PRINT HEX\$(ASC(INPUT\$(1,\#1)));
40 GOTO 20

```
5 0 ~ P R I N T
6 0 ~ E N D
```

EXAMPLE 2:

### 3.17 INSTR

FORMAT: INSTR([1,]XS,Y\$)
VERSIONS: Extended, Disk

```
ACTION:
EXAMPLE: 10 X = "ABCDEB"
    20 Y = "B"
    30 PRINT INSTR(X$,Y$):INSTR(4.X$,Y$)
    RUN
    2 6
    Ok
```

3.18 INT
FORMAT: INT(X)
VERSIONS: $\quad 8 \mathrm{~K}$, Extended, Disk
ACTION: Returns the largest integer $<=X$.
EXAMPLE: PRINT INT(99.89)
99
Ok
PRINT INT(-12.11)
-13
Ok

See the FIX and CINT functions which also return integer values.

### 3.19 LEFTS

```
FORMAT: LEFTS(XS.I)
```

VERSIONS: 8K, Extended, Disk

ACTION: Returns a string comprised of the leftmost I characters of $\times \$$. I must be in the range 0 to 255. If $I$ is greater than LEN $(X \$)$, the entirestring $(X \$)$ will be returned. If $I=0$, the null string (length zero) is returned.

EXAMPLE: $\quad 10 \mathrm{AS}=$ "BASIC-80"
$20 \mathrm{BS}=\mathrm{LEFT}(\mathrm{AS} .5)$
30 PRINT $8 \$$
BASIC
OK
Also see the MID\$ and RIGHT\$ functions.

### 3.20 LEN

FORMAT:
VERSIONS:
ACTION:
EXAMPLE:

LEN(XX)
8K, Extended, Disk
Returns the number of characters in $X \$$. Non-printing characters and blanks are counted.
$10 \times S=$ "PORTLAND, OREGON"
20 PRINT LEN(XS)
16
Ok

### 3.21 LOC

FORMAT: LOC(<file number>)
VERSIONS: Disk
ACTION:

EXAMPLE:

### 3.22 LOG

FORMAT:
LOG(X)
VERSIONS:
8K, Extended, Disk
ACTION:
EXAMPLE:
Returns the natural logarithm of X . X must be greater than zero.
PRINT LOG(45/7)
1.86075

Ok

### 3.23 LPOS

```
FORMAT: LPOS(X)
VERSIONS: Extended, Disk
ACTION: Returns the current position of the line printer print head within the line printer buffer. X is
    a dummy argument.
EXAMPLE: }\quad100\mathrm{ IF LPOS(X)>60 THEN LPRINT CHRS(13)
```


### 3.24 MIDS

| FORMAT: | $\operatorname{MIDS}(X \$, I[, J])$ |
| :--- | :--- |
| VERSIONS: | $8 K$, Extended, Disk |



### 3.25 MKI\$, MKSS, MKDS

| FORMAT: | MKI $\$($ <integer expression>) <br>  <br> VERSION: |
| :--- | :--- |
|  | MKDS(<single precision expression>) |
| MKdouble precision expression>) |  |

ACTION: $\quad$ Convert numeric values to string values. Any numeric value that is placed in a random file buffer with an LSET or RSET statement must be converted to a string. MKI\$ converts an integer to a 2-byte string. MKSS converts a single precision number to a 4-byte string. MKD\$ converts a double precision number to an 8-byte string.

EXAMPLE: $\quad 90 \mathrm{AMT}=(\mathrm{K}+\mathrm{T})$
100 FIELD \#1, 8 AS D\$, 20 AS NS
110 LSET D\$ = MKS\$(AMT)
120 LSET N\$ = A\$
130 PUT\#1
-
-
See also CVI, CVS, CVD, Section 3.9 and Appendix B.

### 3.26 OCTS

```
FORMAT: OCTS(X)
VERSIONS: 8K, Extended, Disk
```

ACTION: Returns a string which represents the octal value of the decimal argument. $X$ is rounded to an integer before OCT\$(X) is evaluated.

EXAMPLE: PRINTOCT\$(24)
30
Ok
See the HEX\$ function for hexadecimal conversion.

### 3.27 PEEK

FORMAT:
VERSIONS:
8K, Exiended, Disk
ACTION:

## EXAMPLE:

Returns the byte (decimal integer in the range 0 to 255 ) read from memory location 1 . With the 8 K version of BASIC-80, I must be less than 32768. To PEEK at a memory location above 32768 , subtraci 65536 from the desired address. With Extended and Disk BASIC-80, I must be in the range 0 to 65536. PEEK is the complementary function to the POKE statement, Section 2.48.

### 3.28 POS

FORMAT:
VERSIONS:
ACTION:
EXAMPLE:

### 3.29 RIGHTS

FORMAT:
VERSIONS:
ACTION:

EXAMPLE:

RIGHTS(XS.I)
8K, Extended, Disk
Returns the rightmost I characters of string $X \$$. If $I=L E N(X \$)$, returns $X \$$. If $I=0$, the null string (length zero) is returned.

10 AS="DISK BASIC-80"
20 PRINT RIGHTS(AS.8)
RUN

BASIC-80
Ok
Also see the MID\$ and LEFT\$ functions.

### 3.30 RND

FORMAT: RND[(X)]
VERSIONS: 8 K, Extended, Disk
ACTION:

EXAMPLE: $\quad 10$ FOR I=1 TO 5
Returns a random number between 0 and 1 . The same sequence of random numbers is generated each time the program is RUN unless the random number generator is reseeded (see RANDOMIZE, Section 2.53). However, $\mathrm{X}<0$ always restarts the same sequence for any given $X$.
$X>0$ or $X$ omitted generates the next random number in the sequence. $X=0$ repeats the last number generated.

20 PRINT INT(RND*100);
30 NEXT
RUN
$\begin{array}{lllll}24 & 30 & 31 & 51 & 5\end{array}$
Ok

### 3.31 SGN

FORMAT: $\operatorname{SGN}(X)$
VERSIONS:
8K, Extended, Disk
ACTION: If $X>0, \operatorname{SGN}(X)$ returns 1.
If $X=0, \operatorname{SGN}(X)$ returns 0 .
If $X<0, S G N(X)$ returns -1 .
EXAMPLE: $\quad$ ON SGN $(X)+2$ GOTO $100,200,300$ branches to 100 if $X$ is negative, 200 if $X$ is 0 and 300 if $X$ is positive.

### 3.32 SIN

FORMAT: $\operatorname{SIN}(X)$
VERSIONS: 8K, Extended, Disk
ACTION: Returns the sine of $X$ in radians. $\operatorname{SIN}(X)$ is calculated in single precision. $\operatorname{COS}(X)=\operatorname{SIN}(X+3.14159 / 2)$.

EXAMPLE: PRINT $\operatorname{SIN}(1.5)$ . 997495
Ok

### 3.33 SPACES

```
FORMAT:
VERSIONS: 8K, Extended, Disk
ACTION: Returns a string of spaces of length X. The expression X is rounded to an integer and must
be in the range 0 to 255.
EXAMPLE: }\quad10\mathrm{ FORI = 1 TO 5
20 XS = SPACES(1)
30 PRINT XS;1
40 NEXT I
RUN
    1
    2
        3
            4
            5
Ok
```

Also see the SPC function.

### 3.34 SPC

```
FORMAT: SPC(1)
```

VERSIONS: $\quad 8 K$, Exiended, Disk

ACTION:

EXAMPLE:

Prints I blanks on the terminal. SPC may only be used with PRINT and LPRINT statements. I must be in the range 0 to 255.
PRINT "OVER" SPC(15) "THERE" OVER
THERE

OK

Also see the SPACE\$ function.
3.35 SQR

FORMAT:
VERSIONS:
ACTION:
EXAMPLE:

SOR(X)
8K, Extended, Disk
Returns the square root of $X$. $X$ must be $>=0$.
10 FOR $X=10$ TO 25 STEP 5
20 PRINT X, SQR(X)
30 NEXT
RUN
$10 \quad 3.16228$
$15 \quad 3.87298$
$20 \quad 4.47214$
$25 \quad 5$
Ok

### 3.36 STRS

| FORMAT: | STRS $(X)$ |
| :--- | :--- |
| VERSIONS: | 8K, Extended, Disk |
| ACTION: | Returns a string representation of the value of $X$. |
| EXAMPLE: | 5 REM ARITHMETIC FOR KIDS |
|  | 10 INPUT "TYPE A NUMBER";N |
|  | 20 ON LEN(STRS(N)) GOSUB 30,100,200,300,400,500 |
|  | $\bullet$ |
|  | $\bullet$ |
|  | Also see the VAL function. |

### 3.37 STRING\$

```
FORMAT: STRING$(I,J)
    STRING$(I,X$)
VERSIONS: Extended, Disk
```

ACTION: $\quad$ Returns a string of length I whose characters all have ASCll code $J$ or the first character of
X\$.
EXAMPLE: $\quad 10 \times \$=\operatorname{STRING} \$(10,45)$
20 PRINT XS "MONTHLY REPORT" X\$
RUN

Ok

### 3.38 TAB

FORMAT:
VERSIONS:
ACTION:

EXAMPLE: $\quad 10$ PRINT "NAME" TAB(25) "AMOUNT" : PRINT
20 READ A\$. $3 \$$
30 PRINT AS TAB(25) B\$
40 DATA "G. T. JONES",'"\$25.00"
RUN
NAME AMOUNT
G. T. JONES $\$ 25.00$

Ok

### 3.39 TAN

$\begin{array}{ll}\text { FORMAT: } & \text { TAN }(\mathrm{X}) \\ \text { VERSIONS: } & \text { 8K, Extended, Disk }\end{array}$
ACTION:

EXAMPLE: $\quad 10 Y=Q \cdot \operatorname{TAN}(X) / 2$
3.40 USR

FORMAT: USR[<digit>l $(X)$
VERSIONS: $\quad 8 K$, Extended, Disk
ACTION: Calls the user's assembly language subroutine with the argument $X$. <digit> is allowed in the Extended and Disk versions only. <digit> is in the range 0 to 9 and corresponds to the digit supplied with the DEF USR statement for that routine. If <digit> is omitted, USRO is assumed. See Appendix C.

EXAMPLE:

```
40B=T*SIN(Y)
```

    \(50 \mathrm{C}=\operatorname{USR}(\mathrm{B} / 2)\)
        \(600=U S R(B / 3)\)
    -
    -
    -
    
### 3.41 VAL

FORMAT: VAL(X\$)
VERSIONS: 8K, Extended. Disk
ACTION:

EXAMPLE: $\quad 10$ READ NAMES,CITYS,STATES,ZIPS
20 IF VAL(ZIP\$)<90000 OR VAL(ZIP\$)>96699 THEN PRINT NAMES TAB(25) "OUT OF STATE"
30 IF VAL(ZIPS) $>=90801$ AND VAL(ZIPS)<=90815 THEN PRINT NAMES TAB(25) "LONG BEACH"
-
-
-
See the STRS function for numeric to string conversion.

### 3.42 VARPTR

| FORMAT 1: | VARPTR(<variable name>) |
| :--- | :--- |
| VERSIONS: | Extended, Disk |
| FORMAT 2: | VARPTR(\#<file number>) |
| VERSIONS: | Disk |

ACTION: $\quad$ Format 1: Returns the address of the first byte of data identified with <variable name>. A value must be assigned to <variable name> prior to execution of VARPTR. Otherwise an "Illegal function call" error results. Any type variable name may be used (numeric, string. array), and the address returned will be an integer in the range 32767 to -32768 . If a negative address is returned, add it to 65536 to obtain the actual address.

VARPTR is usually used to obtain the address of a variable or array so it may be passed to an assembly language subroutine. A function call of the form VARPTR(A(0)) is usually specified when passing an array, so that the lowest-addressed element of the array is returned.

NOTE: . All simple variables should be assigned before calling VARPTR for an array, because the addresses of the arrays change whenever a new simple variable is assigned.

Format 2: Returns the starting address of the field buffer assigned to <file number>.
In Standalone Disk BASIC, VARPTR(\#<file number>) returns the first byte of the file block. See Appendix H.

EXAMPLE:
$100 \mathrm{X}=\mathrm{USR}(\operatorname{VARPTR}(\mathrm{Y}))$

## APPENDIXA

## New Features in BASIC-80, Release 5.0

The execution of BASIC programs written under Microsoft BASIC, release 4.51 and earlier may be affected by some of the new features in release 5.0. Before attempting to run such programs, check for the following:

1. New reserved words: CALL, CHAIN, COMMON, WHILE, WEND, WRITE, OPTION BASE, RANDOMIZE.
2. Conversion from floating point to integer values results in rounding, as opposed to truncation. This affects not only assignment statements (e.g., $1 \%=2.5$ results in $1 \%=3$ ), but also affects function and statement evaluations (e.g., $\mathrm{TAB}(4.5)$ goes to the 5 th position, $A(1.5)$ yields $A(2)$, and $X=11.5 \mathrm{MOD} 4$ yields 0 for $X$ ).
3. The body of a FOR . . . NEXT loop is skipped if the initial value of the loop times the sign of the step exceeds the final value times the sign of the step. See Section 2.22.
4. Division by zero and overflow no longer produce fatal errors. See Section 1.8.1.2.
5. The RND function has been changed so that RND with no argument is the same as RND with a positive argument. The RND function generates the same sequence of random numbers with each RUN, unless RANDOMIZE is used. See Sections 2.53 and 3.30 .
6. The rules for PRINTing single precision and double precision numbers have been changed. See Section 2.49.
7. String space is allocated dynamically, and the first argument in a two-argument CLEAR statement sets the end of memory. The second argument sets the amount of stack space. See Section 2.4.
8. Responding to INPUT with too many or too few items, or with the wrong type of value (numeric instead of string, etc.), or with a carriage return causes the message "?Redo from start" to be printed. No assignment of input values is made until an acceptable response is given.
9. There are two new field formatting characters for use with PRINT USING. An ampersand is used for variable length string fields, and an underscore signifies a literal characier in a format string.
10. If the expression supplied with the WIDTH statement is 255 , BASIC uses an "infinite" line width, that is, it does not insert carriage returns. WIDTH LPRINT may be used to set the line width at the line printer. See Section 2.66.
11. The at-sign and underscore are no longer used as editing characters.
12. Variable names are significant up to 40 characters and can contain embedded reserved words. However, reserved words must now be delimited by spaces. To maintain compatibility with earlier versions of BASIC, spaces will be automatically inserted between adjoining reserved words and variable names. WARNING: This insertion of spaces may cause the end of a line to be truncated if the line length is close to 255 characters.
13. BASIC programs may be saved in a protected binary format. See SAVE, Section 2.60.

## BASIC-80 DISK I/O FUNCTIONS

In CP/M BASIC-80, release 5.0, a number of additions have been made to disk I/O capability:

1. After a GET statement. INPUT\# and LINE INPUT\# may be done to read characters from the random file buffer. PRINT\#, PRINT\# USING, and WRITE\# may also be used to put characters in the random file buffer before a PUT statement.

In the case of WRITE\#, BASIC-80 pads the buffer with spaces up to the carriage return. Any attempt to read or write past the end of the buffer causes a "Field overflow" error.
2. I : <max record size $>$ may be added at the end of the command line to set the maximum record size for use with random files. The default record size is 128 bytes.

A new feature has been added to the INPUT statement. A comma may be used instead of a semicolon after the prompt string to suppress the question mark. For example, the statement INPUT "ENTER BIRTHDATE",BS wili print the prompt with no question mark.

## APPENDIX B

## BASIC-80 Disk I/O

Disk I/O procedures for the beginning BASIC-80 user are examined in this appendix. If you are new to BASIC-80 or if you're getting disk related errors, read through these procedures and program examples to make sure you're using ali the disk statements correctly.

Wherever a filename is required in a disk command or statement, use a name that conforms to your operating system's requirements for filenames. The CP/M operating system will append a default extension .BAS to the filename given in a SAVE, RUN, MERGE or LOAD command.

## B. 1 PROGRAM FILE COMMANDS

Here is a review of the commands and statements used in program file manipulation.
SAVE "filename" $[, A] \quad$ Writes to disk the program that is currently residing in memory. Optional A writes the program as a series of ASCII characters. (Otherwise, BASIC uses a compressed binary format.)

LOAD "filename"[,R]

RUN "filename" $[, R]$

Loads the program from disk into memory. Optional R runs the program immediately. LOAD always deietes the current contents of memory and cioses ail files before LOADing. If $R$ is included, however, open data files are kept open. Thus programs can be chained or loaded in sections and access the same data files.

RUN "filename" loads the program from disk into memory and runs it. RUN deletes the current contents of memory and closes ail files before loading the program. If the R option is included, however, all open data files are kept open.

| MERGE "filename" | Loads the program from disk into memory but does not delete the current contents <br> of memory. The program line numbers on disk are merged with the line numbers in <br> memory. If two lines have the same number, only the line from the disk program is <br> saved. After a MERGE command, the "merged" program resides in memory, and <br> BASIC returns to command level. |
| :--- | :--- |
| KILL "filename" | Deletes the file from the disk. "filename" may be a program file, or a sequential or <br> random access data file. |
| NAME | To change the name of a disk file, execute the NAME statement, NAME "oldfile" AS |
| "newfile". NAME may be used with program files, random files, or sequential files. |  |

## B. 2 PROTEGTED FILES

If you wish to save a program in an encoded binary format, use the "Protect" option with the SAVE command. For example:

SAVE "MYPROG",P
A program saved this way cannot be listed or edited.

## B. 3 DISK DATA FILES—SEQUENTIAL AND RANDOM I/O

There are two types of disk data files that may be created and accessed by a BASIC-80 program: sequential files and random access files.

## B.3.1. Sequential Files

Sequential files are easier to create than random files but are limited in flexibility and speed when it comes to accessing the data. The data that is written to a sequential file is stored, one item after another (sequentially), in the order it is sent and is read back in the same way.

The statements and functions that are used with sequential files are:

| OPEN | PRINT\# | INPUT\# | WRITE\# |
| :--- | :--- | :--- | :--- |
|  | PRINT\# USING | LINE INPUT \# |  |
| CLOSE EOF LOC |  |  |  |

The following program steps are required to create a sequential file and access the data in the file:

1. OPEN the file in "O" mode.

OPEN "O",\#1,"DATA"
2. Write data to the file using the PRINT\# statement. (WRITE\# may be used

PRINT\#1,AS;BS;CS instead.)
3. To access the data in the file, you must CLOSE the file and reOPEN it in "I" mode.

CLOSE\#!
OPEN "I",\#1,"DATA"
4. Use the INPUT\# statement to read data from the sequential file into the INPUT\#1,XS,YS,ZS program.

Program B-1 is a short program that creates a sequential file, "DATA", from information you input at the terminal.

```
Break in 30
Ok
LLIST
10 OPEN "O",#1,"DATA"
20 INPUT "NAME";NS
25 IF NS="DONE" THEN END
30 INPUT "DEPARTMENT";D$
40 INPUT "DATE HIRED";HS
50 PRINT##,NS;",";DS;",";H$
60 PRINT:GOTO 20
Ok
RUN
NAME? MICKEY MOUSE
DEPARTMENT? AUDIO VISUAL AIDS
DATE HIRED? 01/12/72
NAME? SHERLOCK HOLMES
DEPARIMENT? RESEARCH
DATE HIRED? 12/03/65
NAME? EBENEEZER SCROOGE
EBENEEZER SCROOGE
DEPARTMENT? MAINTENN
DATE HIRED? 08/16/78
NAME? EBENEEZER SCROOGE
DEPARTMENT? MAINIENANCE
DATE HIRED? 08/16/78
NAME? ETC.
```

Now look at Program B-2. It accesses the file "DATA" that was created in Program B-1 and diaplays the name of everyone hired in 1978.

```
10 OPEN "I",#l,"DATA"
20 INPUT#1,N$,D$,H$
30 IF RIGFTT$(H$,2)=1978" THEN PRINT N$
40 GOTO 20
RUN
EBENEEZER SCROOGE
SUPER MANN
Input past end in 20
Ok
```


## PROGRAM B-2 - ACCESSING A SEQUENTIAL FILE

Program B-2 reads, sequentially, every item in the file. When all the data has been read, line 20 causes an "input past end" error. To avoid getting this error, insert line 15 which uses the EOF function to lest for end-of-file:

15 IF EOF (1) THEN END
and change line 40 to GOTO 15.
A program that creates a sequential file can also write formatted data to the disk with the PRINT\# USING statement. For example, the statement

```
PRINT\#1,USING"\#\#\#\#.\#\#,";A, B,C,D
```

could be used to write numeric data to disk without explicit delimiters. The comma at the end of the format string serves to separate the items in the disk file.

The LOC function, when used with a sequential file, returns the number of sectors that have been written to or read from the file since it was OPENed. A sector is a 128 -byte block of data.

## B.3.1.1 Adding Data To A Sequential File

If you have a sequential file residing on disk and later want to add more data to the end of it, you cannot simply open the file in " $O$ " mode and start writing data. As soon as you open a sequential file in " $O$ " mode, you destroy its current contents. The following procedure can be used to add data to an existing file called "NAMES".

1. OPEN "NAMES" in "I" mode.
2. OPEN a second file called "COPY" in "O" mode.
3. Read in the data in "NAMES" and write it to "COPY".
4. CLOSE "NAMES" and KILL ir.
5. Write the new information to "COPY".
6. Rename "COPY" as "NAMES" and CLOSE.
7. Now there is a file on disk called "NAMES" that includes all the previous data plus the new data you just added.

Program B-3 illustrates this technique. It can be used to create or add onto a file called NAMES. This program also illustrates the use of LINE INPUT\# to read strings with embedded commas from the disk file. Remember, LINE INPUT\# will read in characters from the disk until it sees a carriage return (it does not stop at quotes or commas) or until it has read 255 characters.

```
10. ON ERROR GOTO }200
20 OPEN "l",#l,"NAMES
30 REM IF FILE EXISTS, WRITE IT TO "COPY"
40 OPEN "O".#2,"COPY"
50 IF EOF(l) THEN 90
60 LINE INPUT#l,A$
70 PRINT#2,A$
80 GOTO 50
90 CLOSE #1
100 KILL "NAMES"
110 REM ADD NEW ENTRIES TO FILE
120 INPUT "NAME";N$
130 IF N$="" THEN 200 'CARRIAGE RETURN INPUT LOOP
140 LINE INPUT "ADDRESS? ";A$
150 LINE INPUT "BIRTHDAY? ";B$
160 PRINT#2,NS
170 PRINT#2,A$
180 PRINT#2,B$
190 PRINT:GOTO }12
200 CLOSE
205 REM CHANGE EILENAME BACK TO "NAMES"
210 NAME "COPY" AS "NAMES"
2000 IF ERR=53 AND ERL=20 THEN OPEN "O",#2,"COPY":RESUME 120
2010 ON ERROR GOIO O
```


## PROGRAM B-3 - ADDING DATA TO A SEQUENTIAL FILE

The error trapping routine in line 2000 traps a "File does not exist" error in line 20. If this happens, the statements that copy the file are skipped, and "COPY" is created as if it were a new file.

## B.3.2 Random Files

Creating and accessing random files requires more program steps than sequential files, but there are advantages to using random files. One advantage is that random files require less room on the disk, because BASIC stores them in a packed binary format. (A sequential file is stored as a series of ASCll characters.)

The biggest advantage to random files is that data can be accessed randomly, i.e., anywhere on the disk-it is not necessary to read through all the information, as with sequential files. This is possible because the information is stored and accessed in distinct units called records and each record is numbered. The maximum logical record number is 32767 . If a record size of 256 is specified, then files up to 8 megabytes can be accessed.

The statements and functions that are used with random files are:

| OPEN | FIELD | LSET/RSET | GET |
| :--- | :--- | :--- | :--- |
| PUT | CLOSE | LOC |  |
| MKIS | CVI |  |  |
| MKSS | CVS |  |  |
| MKD\$ | CVD |  |  |

## B.3.2.1 Creating A Random File

The following program steps are required to create a random file.

1. OPEN the file for random access (" $R$ " mode). This example specifies a

OPEN "R",\#1,"FILE",32 record length of 32 bytes. If the record length is omitted, the default is 128 byiks.
2. Use the FIELD statement to allocate space in the random buffer for the variables that will be written to the random file.
3. Use LSET to move the data into the random buffer. Numeric values must be made into strings when placed in the buffer. To do this, use the "make" functions: MKI\$ to make an integer value into a string, MKS\$ for a single precision value, and MKD\$ for a double precision value.
4. Write the data from the buffer to the disk using the PUT statement.

FIELD \#1 20 AS NS,
4 AS AS, 8 AS P\$
LSETNS=X\$
LSET AS=MKS\$(AMT)
LSET PS=TEL\$

Look at Program B-4. It takes information that is input at the terminal and writes it to a random file. Each time the PUT statement is executed, a record is written to the file. The two-digit code that is input in line 30 becomes the record number.

## NOTE

Do not use a FIELDed string variable in an INPUT or LET statement. This causes the pointer for that variable to point into string space instead of the random file buffer.

```
10 OPEN "R",#l,"FILE"
20 FIELD #1,20 AS NS,4 AS AS,8 AS PS
30 INPUT "2-DIGIT CODE";CODE%
40 INPUT "NAME";X$
5 0 ~ I N P U T ~ " A M O U N T " ; A M T ~
60 INPUT "PHONE";TELS:PRINT
70 LSET N$=X$
80 LSET A$=MKS$ (AMT)
90 LSET P$=TEL$
100 PUN #l,CODE%
110 GOIO 30
```

PROGRAM B-4 - CREATE A RANDOM FILE

## B.3.2.2 Access A Random File

The following program steps are required to access a random file:

1. OPEN the file in " $R$ " mode.

OPEN "R",\#1,"FILE",32
2. Use the FIELD statement to allocate space in the random buffer for the

FIELD \#1 20 AS N\$.
4 AS AS, 8 AS PS
NOTE:
In a program that performs both input and output on the same random file, you can often use just one OPEN statement and one FIELD statement.
3. Use the GET statement to move the desired record in to the random buffer.
4. The data in the buffer may now be accessed by the program. Numeric values must be converted back to numbers using the "convert" functions: CVI for integers, CVS for single precision values, and CVD for double precision values.

GET \#1, CODE\%
PRINT N\$
PRINT CVS(AS)

Program B-5 accesses the random file "FILE" that was created in Program B-4. By inputting the three-digit code at the terminal, the information associated with that code is read from the file and displayed.

```
10 OPEN "R",#l,"FILE"
20 FIELD #1, 20 AS NS, 4 AS AS, 8 AS P$
30 INPUT "2-DIGIT CODE";CODE%
40 GET #1, CODE%
50 PRINT NS
60 PRINI USING "$$###.##";CVS(A$)
70 PRINT PS:PRINT
80 GOIO 30
```


## PROGRAM B-5 - ACCESS A RANDOM FILE

The LOC function, with random files, returns the "current record number." The current record number is one plus the last record number that was used in a GET or PUT statement. For example, the statement

## IF LOC(1)>50 THEN END

ends program execution if the current record number in file\#1 is higher than 50.
Program B-6 is an inventory program that illustrates random file access. In this program, the record number is used as the part number, and it is assumed the inventory will contain no more than 100 different part numbers. Lines 900-960 initialize the data file by writing $\mathrm{CHRS(255)}$ as the first character of each record. This is used later (line 270 and line 500) to determine whether an entry already exists for that part number.

Lines 130-220 display the different inventory functions that the program performs. When you type in the desired function number, line 230 branches to the appropriate subroutine.

```
120 OPEN *9}\mp@subsup{}{}{8\prime\prime
125 FIELD##1,1 AS F$,30 AS DS,2 ASQ$,2 AS RS, 4 AS PS
130 PRINI:PRINT "FUNCTIONS:":PRINI
135 PRINT 1, "INITIALIZE FILE"
140 PRINT 2, "CREATE A NEW ENITRY"
150 PRINT 3, "DISPIAY INVENIORY FOR ONE PART"
160 PRINI 4, "ADD TO STOCK"
170 PRINT 5, "SUBTRACT FROM STOCK"
180 PRINT 6, "DISPLAY AL工 ITEMS BELOW REORDER LEVEL"
220 PRINT:PRINI: INPUT"FUNCIION" ;FUNCIION
225 IF (EUNCIION<l)OR(FUNCIION>6) THEN PRINI "BAD FUNCIION NUMBER":GOIO 130
230 ON FUNCTION GOSUB 900,250, 390,480,680
240 GOTO 220
250 REM BUIID NEW ENIRY
260 GOSUB 840
270 IF ASC(FS)<>255 THEN INPUT"OVERWRITE";A$:IF AS<>'YM THEN RETURN
280 LSEI F$=CHR$(0)
290 INPUT "DESCRIPIICN";DESC$
300 LSET DS=DESCS
310 INPUT "QUANIITY IN STOCK";Q%
320 LSET Q$=MKI$(Q%)
330 INPUT "REORDER LEVEL";R%
340 [SET RS=MKI$(R%)
350 INPUT "UNIT PRICE";P
360 LSEI P$=MKS$(P)
370 PUTH1,PART%
380 REMURN
390 REM DISPLAY ENIRY
400 GOSUB }84
410 IF ASC(FS)=255 THEN PRINT "NUTL ENTMRY":REIURN
420 PRINT USING "PART NUMBER ###"";PART%
4 3 0 ~ P R I N T ~ D S ~
440 PRINI USING "QUANITTY ON HAND ######";CVI(QS)
450 PRINI USING "REORDER LEVEL ######" ;CVI (RS)
460 PRINT USING "UNIT PRICE $S######";CVS (P$)
470 RETURN
480 REM ADD TO STOCK
490 GOSUB840
500 IF ASC(ES)=255 THEN PRINI "NUL工 ENIRY" :RENURN
```

```
510 PRINT D$:INPUT "QUANIITY TO ADD";A%
520 Q%=CVI(QS)+A%
530 LSET Q$=MKI$(Q%)
540 PUT##1,PART%
550 RETURN
560 REM REMOVE FROM STOCK
570 GOSUB 840
580 IF ASC(FS)=255 THEN PRINT "NULL ENTRY":RETURN
590 PRINT D$
600 INPUT "QUANTITY TO SUBTRACT";S%
610 Q%=CVI(QS)
620 IF (Q%-S%)<0 THEN PRINT "ONLY";Q%;"IN STOCK":GOTO 600
630 Q%=Q%-S%
640 IF Q%=<CVI(RS) THEN PRINT "QUANTITY NON";Q%;"REORDER LEVEL";CVI(RS)
650 LSET QS=MKI$(Q%)
660 PUT#1,PART%
6 7 0 ~ R E T U R N ~
680 REM DISPLAY ITEMS BELOW REORDER LEVEL
690 FOR I=1 TO 100
710 GET#1,I
720 IF CVI(QS)<CVI(RS) THEN PRINT D$;"QUANIITY'";CVI(Q$) TAB(50)
    "REORDER LEVEL";CVI (RS)
730 NEXT I
740 REIURN
840 INPUT "PART NUMBER";PART%
850 IF (PART%<1)OR(PART%>100) THEN PRINT "BAD PART NUMBER":GOTO }84
    ELSE GET#1,PART%:RETURN
890 END
900 REM INITIALIZE
910 INPUT "ARE YOU SURE";BS:IF B$<>"Y" THEN RETURN
920 LSET F$=CHR$(255)
930 FOR I=1 TO 100
940 PUT#1,I
950 NEXT I
960 RETURN
```


## APPENDIX C

## Assembly Language Subroutines

All versions of BASIC-80 have provisions for interfacing with assembly language subroutines. The USR Function allows assembly language subroutines to be called in the same way BASIC's intrinsic functions are called.

## NOTE

The addresses of the DEINT, GIVABF, MAKINT and FRCINT routines are stored in locations that must be supplied individually for different implementations of BASIC.

## C. 1 MEMORY ALLOCATION

Memory space must be set aside for an assembly language subroutine before it can be loaded. During initialization, enter the highest memory location minus the amount of memory needed for the assembly language subroutine(s). BASIC uses all memory available from its starting location up, so only the topmost locations in memory can be set aside for user subroutines.

When an assembly language subroutine is called, the stack pointer is set up for 8 levels ( 16 bytes) of stack storage. If more stack space is needed, BASIC's stack can be saved and a new stack set up for use by the assembly language subroutine. BASIC's stack must be restored, however, before returning from the subroutine.

The assembly language subroutine may be loaded into memory by means of the system monitor, or the BASIC POKE statement, or (if the user has the MACRO-80 or FORTRAN-80 package) routines may be assembled with MACRO-80 and loaded using LINK-80.

## C. 2 USR FUNCTION CALLS—8K BASIC

The starting address of the assembly language subroutine must be stored in USRLOC, a two-byte location in memory that is supplied individually with different implementations of BASIC-80. With 8K BASIC, the starting address may be POKEd into USRLOC. Store the low order byte first, followed by the high order byte.

The function USR will call the routine whose address is in USRLOC. Initially USRLOC contains the address of ILLFUN, the routine that gives the "Illegal function call" error. Therefore, if USR is called without changing the address in USRLOC, an "lllegal function call" error results.

The format of a USR function call is
USR(argument)
where the argument is a numeric expression. To obtain the argument, the assembly language subroutine must call the routine DEINT. DEINT places the argument into the D,E register pair as a 2-byte, 2's complement integer. (If the argument is not in the range -32768 to 32767 , an "lllegal function call" error occurs.)

To pass the result back from an assembly language subroutine, load the value in register pair $[A, B]$, and call the routine GIVABF. If GIVABF is not called, $\operatorname{USR}(X)$ returns $X$. To return to BASIC, the assembly language subroutine must execute a RET instruction.

For example, here is an assembly language subroutine that multiplies the argument by 2 :
USRSUB: CALL DEINT ;put arg in D.E
XCHG ;move arg to $\mathrm{H}, \mathrm{L}$
DADH $; H, L=H, L+H, L$.
MOV A,H ;move resuli to $A, B$
MOV B,L
JMP GIVABF ;pass result back and RETurn
Note that valid results will be obtained from this routine for arguments in the range $-16384<=x<=16383$. The single instruction JMP GIVABF has the same effect as:

## CALL GIVABF <br> RET

To return additional values to the program, load them into memory and read them with the PEEK function.
There are several methods by which a program may call more than one USR poutine. For example, the starting add ress of each routine may be POKEd into USRLOC prior to each USR call, or the argument to USR could be an index into a table of USR routines.

## C. 3 USR FUNCTION CALLS - EXTENDED AND DISK BASIC

In the Extended and Disk versions, the format of the USR function is
USR[<digit>](argument)
where <digit> is from 0 to 9 and the argument is any numeric or string expression. <digit> specifies which USR routine is being called, and corresponds with the digit supplied in the DEF USR statement for that routine. If <digit> is omitted, USRO is assumed. The address given in the DEF USR statement determines the starting address of the subroutine.

When the USR function call is made, register $A$ contains a value that specifies the type of argument that was given. The value in A may be one of the following:

| Value in A | Type of Argument |
| :---: | :--- |
| 2 | Two-byte integer (two's complement) |
| 3 | String |
| 4 | Single precision floating point number |
| 8 | Double precision floating point number |

If the argument is a number, the $[H, L]$ register pair points to the Floating Point Accumulator (FAC) where the argument is stored.

If the argument is an integer:
FAC-3 contains the lower 8 bits of the argument and FAC-2 contains the upper 8 bits of the argument.

If the argument is a single precision floating point number:

FAC-3 contains the lowest 8 bits of mantissa and FAC-2 contains the middle 8 bits of mantissa and FAC-1 contains the highest 7 bits of mantissa with leading 1 suppressed (implied). Bit 7 is the sign of the number ( $0=$ positive, $1=$ negative). FAC is the exponent minus 128 , and the binary point is to the left of the most significant bit of the mantissa.

If the argument is a double precision floating point number:
FAC-7 through FAC-4 contain four more bytes of mantissa (FAC-7 contains the lowest 8 bits).
If the argument is a string, the $[D, E]$ register pair points to 3 bytes called the "string descriptor." Byte 0 of the string descriptor contains the length of the string ( 0 to 255 ). Bytes 1 and 2 , respectively, are the lower and upper 8 bits of the string starting address in string space.

CAUTION: If the argument is a string literal in the program, the string descriptor will point to program text. Be careful not to alter or destroy your program this way. To avoid unpredictable results, add +"" to the string literal in the program. Example:

$$
A \$=" B A S I C-80 "+" "
$$

This will copy the string literal into string space and will prevent alteration of program text during a subroutine call.

Usually, the value returned by a USR function is the same type (integer, string, single precision or double precision) as the argument that was passed to it. However, calling the MAKINT routine returns the integer in [H,L] as the value of the function, forcing the value returned by the function to be integer. To execute MAKINT, use the following sequence to return from the subroutine:

| PUSH | $H$ | ;save value to be returned |
| :--- | :--- | :--- |
| LHLD | $x x x$ | iget address of MAKINT routine <br> ;save return on stack and <br> iget back $[H, L]$ <br> XTHL |
|  |  | ;return |

Also, the argument of the function, regardless of its type, may be forced to an integer by calling the FRCINT routine to get the integer value of the argument in $[\mathrm{H}, \mathrm{L}]$. Execute the following routine:

| LXI | $H$ | ;get address of subroutine <br> ;continuation |
| :--- | :--- | :--- |
| PUSH | $H$ | ;place on stack |
| LHLD | $x \times x$ | ;get address of FRCINT |
| PCHL |  |  |

SUB1: . ....

## C. 4 CALL STATEMENT

Extended and Disk BASIC-80 user function calls may also be made with the CALL statement. The calling sequence used is the same as that in Microsoft's FORTRAN, COBOL and BASIC compilers.

A CALL statement with no arguments generates a simple "CALL" instruction. The corresponding subroutine should return via a simple "RET." (CALL and RET are 8080 opcodes-see an 8080 reference manual for details.)

A subroutine CALL with arguments results in a somewhat more complex calling sequence. For each argument in the CALL argument list. a parameter is passed to the subroutine. That parameter is the address of the low byte of the argument. Therefore, parameters always occupy two bytes each, regardless of type.

The method of passing the parameters depends upon the number of parameters to pass:

1. If the number of parameters is less than or equal to 3 , they are passed in the registers. Parameter i will be in $\mathrm{HL}, 2$ in OE (if present), and 3 in BC (if present).
2. If the number of parameters is greater than 3, they are passed as follows:
3. Parameter 1 in HL.
4. Parameter 2 in DE.
5. Parameters 3 through $n$ in a contiguous data block. BC will point to the low byte of this data biock (i.e., to the low byte of parameter 3).

Note that, with this scheme, the subroutine must know how many parameters to expect in order to find them. Conversely, the calling program is responsible for passing the correct number of parameters. There are no checks for correct number or type of parameters.

If the subroutine expects more than 3 parameters, and needs to transfer them to a local data area. there is a system subroutine which will perform this transfer. This argument transfer routine is named \$AT (located in the FORTRAN library, FORLIB.REL), and is called with HL pointing to the local data area, BC pointing to the third parameter, and A containing the number of arguments to transfer (i.e., the total number of arguments minus 2). The subroutine is responsible for saving the first two parameters before calling $\$ A T$. For example, if a subroutine expects 5 parameters, it should look like:

| SUBR: | SHID | Pl | ;SAVE PARAMETER 1 |
| :---: | :---: | :---: | :---: |
|  | XCEEG |  |  |
|  | SHED | P2 | ;SAVE PARAMETER 2 |
|  | MVI | $A_{8} 3$ | ;NO. OF PARAMETERS LEFT |
|  | LXI | H, P 3 | ;POINTER TO LOCAL AREA |
|  | CALL | \$AT | ;TRANSFER THE OTHER 3 PARAMETERS |
|  | - |  |  |
|  | - |  |  |
|  | [Body | f sub | ine] |
|  | - |  |  |
|  | - |  |  |
|  | RET |  | ;RETURN TO CALLER |
| P1: | DS | 2 | ;SPACE FOR PARAMETER 1 |
| P2: | DS | 2 | ;SPACE FOR PARAMETER 2 |
| P3: | DS | 6 | ;SPACE FOR PARAMETERS 3-5 |

A listing of the argument transfer routine AT\$ follows.

| 00100 |  | ARGUMENT TRANSFER |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 00200 | ; [B,C] | POINTS TO 3RD PARAM. |  |  |
| 00300 | ; [H,L] | CONTAINS THE \# OF PARAMS TO XFER(TOTAL-2) |  |  |
| 00400 | ; [A] |  |  |  |
| 00500 |  |  |  |  |
| 00600 |  |  |  |  |
| 00700 |  | ENIRY | \$AT |  |
| 00800 | \$AT: | XCHG |  | ;SAVE [H,L] IN [D,E] |
| 00900 |  | MOV | H, B |  |
| 01000 |  | MOV | L, C | ; [H,L]= PTR TO PARAMS |
| 01100 | ATl: | MOV | $\mathrm{C}, \mathrm{M}$ |  |
| 01200 |  | INX | H |  |
| 01300 |  | MOV | B,M |  |
| 01400 |  | INX | H | ; $[\mathrm{B}, \mathrm{C}]=$ PARAM ADR |
| 01500 |  | XCHG |  | ; [H,L] POINIS TO LOCAL STORAGE |
| 01600 |  | MOV | M, C |  |
| 01700 |  | INX | H |  |
| 01800 |  | MOV | M, B |  |
| 01900 | , | INX | H | ;STORE PARAM IN LOCAL AREA |
| 02000 |  | XCHG |  | ;SINCE GOING BACK TO ATl |
| 02100 |  | DCR | A | ;TRANSFERRED ALI PARAMS? |
| 02200 |  | JNZ | AT1 | ;NO, COPY MORE |
| 02300 |  | RET |  | ;YES, REIURN |

When accessing parameters in a subroutine. don't forget that they are pointers to the actual arguments passed.

## NOTE

It is entirely up to the programmer to see to it that the arguments in the calling program match in number, type, and length with the parameters expected by the subroutine. This applies to BASIC subroutines, as well as those written in assembly language.

## C. 5 INTERRUPTS

Assembly language subroutines can be written to handle interrupts. All interrupt handling routines should save the stack, register A-L and the PSW. Interrupts should always be re-enabled before returning from the subroutine, since an interrupt automatically disables all further interrupts once it is received. The user should be aware of which interrupt vectors are free in the particular version of BASIC that has been supplied. Note to CP/M users: in CP/M BASIC, all interrupt vectors are free.)


## APPENDIXD

## BASIC-80 with the C.P/M Operating System

The CP/M version of BASIC-80 (MBASIC) is supplied on a $51 / 4$ inch Vector Graphic compatible diskette. The name of the file is MBASIC.COM. (A 28K or larger CP/M system is recommended.)

To run MBASIC, bring up CP/M and type the following:

$$
\text { A }>\text { MBASIC <carriage return }>
$$

The system will reply:

```
xxxx Bytes Free
BASIC-80 Version 5.0
(CP/MM Version)
Copyright 1978 (C) by Microsoft
Created: dd-mmm-yy
Ok
```

MBASIC is the same as Disk BASIC-80 as described in this manual, with the following exceptions:

## D. 1 INITIALIZATION

The initialization dialog has been replaced by a set of options which are placed after the MBASIC command to $C P / M$. The format of the command line is:

A>MBASIC [<filename>][/F:<number of files>][/M:<highest memory location>]
If <filename> is present, MBASIC proceeds as if a RUN <filename>command were typed after initialization is complete. A default extension of .BAS is used if none is supplied and the filename is less than 9 characters long. This allows BASIC programs to be executed in batch mode using the SUBMIT facility of CP/M. Such programs should include a SYSTEM tratement (see below) to return to $C P / M$ when they have finished, allowing the next program in the batch stream to execute.

If /F:<number of files> is present, it sets the number of disk data files that may be open at any one time during the execution of a BASIC program. Each file data block allocated in this fashion requires 166 bytes of memory. If the /F option is omitted, the number of files defaults to 3.
 some cases it is desirable to set the amount of memory well below the CP/M's FDOS to reserve space for assembly language subroutines. In all cases. <highest memory location> should be below the start of FDOS (whose address is contained in locations 6 and 7 ). If the $/ M$ option is omitted. all memory up to the start of FDOS is used.

## NOTE

Both <number of files> and <highest memory location> are numbers that may be either decimal, octal (preceded by \&O) or hexadecimal (preceded by \&H).

## Examples:

A $>$ MBASIC PAYROLL.BAS
A $>$ MBASIC INVENT/F:6
A MBASIC / M:32768
A $>$ MBASIC DATACK/F:2/M: \&H90000
A>MBASIC5 INTerest. BAS

Use all memory and 3 files, load and execute PAYROLL.BAS.
Use all memory and 6 files, load and execute INVENT.BAS.
Use first 32 K of memory and 3 files.
Use first 36K of memory, 2 files, and execute DATACK.BAS. ACTUAL Pgm

## D. 2 DISK FILES

Disk filenames follow the normal CP/M naming conventions. All filenames may include A : or B : as the first two characters to specify a disk drive, otherwise the currently selected drive is assumed. A defaultextension of .BAS is used on LOAD. SAVE MERGE and RUN <filename> commands if no "." appears in the filename and the filename is less than 9 characters long.

## D. 3 FILES COMMAND

FORMAT: $\quad$ FILES[<filename>]
PURPOSE: To print the names of files residing on the current disk.
REMARKS: If <filename> is omitted, all the files on the currently selected drive will be listed. <filename> is a string formula which may contain question marks (?) to match any character in the filename or extension. An asterisk (") as the first character of the filename or extension will match any file or any extension.

EXAMPLES:
FILES
FILES "".BAS"
FILES "B:"."
FILES""TEST?.BAS"

## D. 4 RESET COMMAND

FORMAT: RESET
PURPOSE: $\quad$ To close all disk files and write the directory information to a diskette before it is removed from a disk drive.

REMARKS: Always execute a RESET command before removing a diskette from a disk drive. Otherwise, when the diskette is used again, it will not have the current directory information written on the directory track.

RESET closes all open files on all drives and writes the directory track to every diskette with open files.

## D. 5 LOF FUNCTION

FORMAT: LOF (<file number>)
$\begin{array}{ll}\text { ACTION: } & \begin{array}{l}\text { Returns the number of records present in the last extent read or written. If the file does not } \\ \text { exceed one extent ( } 128 \text { records), then LOF returns the true length of the file. }\end{array} \\ \text { EXAMPLE: } & 110 \text { IF NUM } \%>\text { LOF (1) THEN PRINT "INVALID ENTRY" }\end{array}$

## D. 6 EOF

With CP/M, the EOF function may be used with random files. If a GET is done past the end of file, EOF will return -1 . This may be used to find the size of a file using a binary search or other algorithm.

## D. 7 MISCELLANEOUS

1. CSAVE and CLOAD are not implemented.
2. To return to $C P / M$, use the SYSTEM command or statement. SYSTEM closes all files and then performs a CP/M warm start. Control-C always returns to MBASIC, not to CP/M.
3. FRCINT is at 103 hex and MAKINT is at 105 hex.

Appendices E-H do not exist.

## APPENDIXI

## Converting Programs to BASIC-80

If you have programs written in a BASIC other than BASIC-80, some minor adjustments may be necessary before running them with BASIC-80. Here are some specific things to look for when converting BASIC programs.

## I. 1 STRING DIMENSIONS

Delete all statements that are used to declare the length of strings. A statement such as DIM AS (I.J), which dimensions a string array for $J$ elements of length $I$, should be converted to the BASIC-80 statement DIM A\$(J).

Some BASICs use a comma or ampersand for string concatenation. Each of these must be changed to a plus sign, which is the operator for BASIC -80 string concatenation.

In BASIC-80, the MIDS. RIGHTS, and LEFTS functions are used to take substrings of strings. Forms such as AS(1) to access the Ith character in $A \$$, or $A \$(I, J)$ to take a substring of $A \$$ from position I to position J. must be changed as follows:

| Other BASIC | BASIC-80 |
| :--- | :--- |
| $X \$=A \$(1)$ | $X S=$ MID $\$(A \$, 1,1)$ |
| $X \$=A \$(1, J)$ | $X S=$ MID $\$(A \$, 1, J-1+1)$ |

If the substring reference is on the left side of an assignment and $X \$$ is used to replace characters in $A \$$, convert as follows:

| Other BASIC | 8K BASIC-80 |
| :---: | :---: |
| $A \$(1)=X \$$ | $A \$=L E F T \$(A \$, 1-1)+X \$+M I D S(A S .1+1)$ |
| $A \$(1, J)=X \$$ | AS $=$ LEFTS $(A S, 1-1) ;$ XS $\operatorname{MiDS}(A \$, J+1)$ |
|  | Ext. and Disk BASIC-80 |
| $A S(1)=X S$ | MIDS(AS, 1,1)=X\$ |
| $A \$(1, J)=X \$$ | $\operatorname{MIDS}(\mathrm{A}, \mathrm{I}, \mathrm{J}-i+1)=\mathrm{XS}$ |

### 1.2 MULTIPLE ASSIGNMENTS

Some BASICs allow statements of the form:
10 LET $B=C=0$
to set $B$ and $C$ equal to zero. BASIC- 80 would interpret the second equal sign as alogical operator and set $B$ equal to -1 if $C$ equaled 0 . Instead, convert this statement to two assignment statements:
$10 C=0: B=0$

### 1.3 MULTIPLE STATEMENTS

Some BASICs use a backsiash ( $\backslash$ ) to separate multiple statements on a line. With BASIC-80, be sure all statements on a line are separated by a colon (:).

### 1.4 MAT FUNCTIONS

Programs using the MAT functions available in some BASICs must be rewritten using FOR . . . NEXT loops to execute properly.

## APPENDIX J

Summary of Error Codes and Error Messages


| OM | 7 | Out of memory <br> A program is too large, has too many FOR loops or GOSUBs, too many variables. or expressions that are too complicated. |
| :---: | :---: | :---: |
| UL | 8 | Undefined line <br> A line reference in a GOTO, GOSUB, IF . . . THEN . . . ELSE or DELETE is to a nonexistent line. |
| BS | 9 | Subscript out of range <br> An array element is referenced either with a subscript that is outside the dimensions of the array, or with the wrong number of subscripts. |
| DD | 10 | Redimensioned array <br> Two DIM statements are given for the same array, or a DIM statement is given for an array after the default dimension of 10 has been established for that array. |
| 10 | 11 | Division by zero <br> A division by zero is encountered in an expression, or the operation of involution results in zero being raised to a negative power. Machine infinity with the sign of the numerator is supplied as the result of the division, or positive machine infinity is supplied as the result of the involution, and execution continues. |
| 10 | 12 | lliegal direct <br> A statement that is illegal in direct mode is entered as a direct mode command. |
| TM | 13 | Type mismatch <br> A string variable name is assigned a numeric value or vice versa: a function that expects a numeric argument is given a string argument or vice versa. |
| OS | 14 | Out of string space <br> String variables cause BASIC to exceed the amount of free memory remaining. BASIC will allocate string space dynamically, until it runs out of memory. |
| LS | 15 | String too long <br> An attempt is made to create a string more than 255 characters long. |
| ST | 16 | String formula too complex <br> A string expression is too long or too complex. The expression should be broken into smaller expressions. |
| CN | 17 | Can't continue <br> An attempt is made to continue a program that: <br> 1. has halted due to an error, <br> 2. has been modified during a break in execution, or <br> 3. does not exist. |
| UF | 18 | Undefined user function <br> A USR function is called before the function definition (DEF statement) is given. <br> Extended and Disk Versions Only |
|  | 19 | No RESUME <br> An error trapping routine is entered but contains no RESUME statement. |

RESUME without error
A RESUME statement is encountered before an error trapping routine is entered.
Unprintable error
An error message is not available for the error condition which exists. This is usually caused by an ERROR with an undefined error code.

Missing operand
An expression contains an operator with no operand following it.
Line buffer overflow
An attempt is made to input a line that has too many characters.
FOR without NEXT
A FOR was encountered without a matching NEXT.
WHILE without WEND
A WHILE statement does not have a matching WEND.
WEND without WHILE
A WEND was encountered without a matching WHILE.

Disk Errors
Field overflow
A FIELD statement is attempting to allocate more bytes than were specified for the record length of a random file.

Internal error
An internal malfunction has occurred in Disk BASIC-80. Report the conditions under which the message appeared.

Bad file number
A statement or command references a file with a file number thatis not OPEN or is out of the range of file numbers specified at initialization.

File not found
A LOAD, KILL or OPEN statement references a file that does not exist on the current disk.

Bad file mode
An attempt is made to use PUT, GET, of LOF with a sequential file. to LOAD random file or to execute an OPEN with a file mode other than I, O. or R.

File already open
A sequential output mode OPEN is issued for a file that is already open; or a KILL is given for a file that is open.

Disk I/O error
An I/O error occurred on a disk I/O operation. It is a fatal error, i.e., the operating system cannot recover from the error.

File already exists
The filename specified in a NAME statement is identical to a filename already in use on the disk

Disk full
All disk storage space is in use.
Input past end An INPUT statement is executed after all the data in the file has been INPUT. or for a null (empty) file. To avoid this error, use the EOF function to detect the end of file.

Bad record number
In a PUT or GET statement, the record number is either greater than the maximum allowed (32767) or equal to zero.

Bad file name
An illegal form is used for the filename with LOAD, SAVE, KILL, or OPEN (e.g., a filename with too many characters).

Direct statement in file
A direct statement is encountered while LOADing an ASCII-format file. The LOAD is terminated.

Too many files
An attempt is made to create a new file (using SAVE or OPEN) when all 255 directory entries are full.

## APPENDIXK

## Mathematical Functions

## Derived Functions

Functions that are not instrinsic to BASIC-80 may be calculated as follows:

| Function | BASIC-80 Equivalent |
| :---: | :---: |
| SECANT | $\operatorname{SEC}(X)=1 / \operatorname{Cos}(X)$ |
| COSECANT | $\operatorname{CSC}(X)=1 / \operatorname{SIN}(X)$ |
| COTANGENT | $\operatorname{COT}(x)=1 / \operatorname{TAN}(x)$ |
| INVERSE SINE | $\operatorname{ARCSIN}(X)=\operatorname{ATN}\left(X / S Q R\left(-X^{*} \mathrm{X}+1\right)\right)$ |
| INVERSE COSINE | $\operatorname{ARCCOS}(X)=-\operatorname{ATN}(X / S Q R(-X * X+1))+1.5708$ |
| INVERSE SECANT | $\operatorname{ARCSEC}(X)=\operatorname{ATN}\left(X / S Q R\left(X^{*} X-1\right)\right)+\operatorname{SGN}(\operatorname{SGN}(X)-1)^{*} 1.5708$ |
| INVERSE COSECANT | $\operatorname{ARCCSC}(X)=\operatorname{ATN}(X / S Q R(X *-1))+(\operatorname{SGN}(X)-1)^{*} 1.5708$ |
| INVERSE COTANGENT | $\operatorname{ARCCOT}(X)=\operatorname{ATN}(X)+1.5708$ |
| HYPERBOLIC SINE | $\operatorname{SINH}(X)=(\operatorname{EXP}(X)-\operatorname{EXP}(-X)) / 2$ |
| HYPERBOLIC COSINE | $\operatorname{COSH}(\mathrm{X})=(\operatorname{EXP}(\mathrm{X})+\operatorname{EXP}(-X)) / 2$ |
| HYPEREOLIC TANGENT | $\operatorname{TANH}(\mathrm{X})=\operatorname{EXP}(-X) / \operatorname{EXP}(X)+\operatorname{EXP}(-X))^{* 2+1}$ |
| HYPERBOLIC SECANT | $\operatorname{SECH}(X)=2 /(\operatorname{EXP}(X)+E X P(-X))$ |
| HYPERBOLIC COSECANT | $\operatorname{CSCH}(X)=2 /(\operatorname{EXP}(X)+E X P(-X))$ |
| HYPEREOLIC COTANGENT | $\operatorname{COTH}(X)=\operatorname{EXP}(-X) /(\operatorname{EXP}(X)-\operatorname{EXP}(-X))^{*} 2+1$ |
| INVERSE HYPERBOLIC SINE | $\operatorname{ARCSINH}(X)=\operatorname{LOG}\left(X+\operatorname{SQR}\left(X^{*} \mathrm{X}+1\right)\right)$ |
| INVERSE HYPERBOLIC COSINE | $\operatorname{ARCCOSH}(X)=\operatorname{LOG}\left(X+\operatorname{SQR}\left(\mathrm{X}^{*} \mathrm{X}-1\right)\right.$ |
| INVERSE HYPERBOLIC TANGENT | ARCTANH $(X)=\operatorname{LOG}((1+X) /(1-X)) / 2$ |
| INVERSE HYPERBOLIC SECANT | $\operatorname{ARCSECH}(X)=\operatorname{LOG}\left(\left(\operatorname{SQR}\left(-x^{*} \mathrm{X}+1\right)+1\right) / X\right.$ |
| INVERSE HYPERBOLIC COSECANT | $\operatorname{ARCCSCH}(X)=\operatorname{LOG}\left(\left(\operatorname{SGN}(X) \cdot \operatorname{SQR}\left(X^{\circ} X+1\right)+1\right) / X\right.$ |
| INVERSE HYPERBOLIC COTANGENT | $\operatorname{ARCCOTH}(X)=\operatorname{LOG}((X+1) /(X-1)) / 2$ |

## APPENDIX L

## Microsoft BASIC Compiler

The Microsoft BASIC Compiler package contains the following software: BASIC Compiler, MACRO-80 assembler, and LINK-80 loader. The following manuals are also supplied: BASIC-80 Reference Manual, BASIC Compiler User's Manual, Utility Software Manual. The Utility Software Manual is the reference manual for MACRO-80 and LINK-80. The BASIC Compiler User's Manual describes the use of the compiler, its command format. compilation switches and error messages. The BASIC language that is used with the Microsoft BASIC Compiler is the same as described in this manual for Disk BASIC-80 with the following exceptions:

## L. 1 OPERATIONAL DIFFERENCES

The Compiler interacts with the console only to read compiler commands. These specify what files are to be compiled. There is no "direct mode," as with the BASIC-80 interpreter. Commands that are usually issued in the direct mode with the BASIC-80 interpreter are not implemented on the Compiler.

The following statements and commands are not implemented and will generate an error message:

| AUTO | CLEAR | CLOAD | CSAVE | CONT | DELETE |
| :--- | :--- | :--- | :--- | :--- | :--- |
| EDIT | LIST | LLIST | RENUM | RUN | SAVE |
| LOAD | MERGE | NEW | CHAIN | COMMON | RESET |
| FILES |  |  |  |  |  |

Because there is no direct mode for typing in programs or edit mode for editing programs, use Microsoft's EDIT-80 Text Editor or BASIC-80 Interpreter for creating and editing programs. If you use the interpreter, be sure to SAVE the file with the A (ASCII format) option.

The compiler cannot accept a physical line that is more than 127 characters in length. A logical statement, however, may contain as many physical lines as desired. Use line feed to start a new physical line within a logical statement.

To reduce the size of the compiled program, there are no program line numbers included in the object code generated by the compiler unless the /D, /X, or /E switch is set in the compiler command. Error messages, therefore, contain the address where the error occurred, instead of a line number. The compiler listing and the map generated by LINK-80 are used to identify the line that has the error. It is always a good idea to debug programs using the BASIC-80 interpreter before attempting to compile them. See the BASIC Compiler User's Manual for more information.

## L. 2 LANGUAGE DIFFERENCES

Most programs that run on the Microsoft BASIC-80 interpreter will run on the BASIC Compiler with little or no change. However, it is necessary to note differences in the use of the following program statements:

1. CALL

The <variable name> field in the CALL statement must contain an External symbol, i.e., one that is recognized by LINK-80 as a global symbol. This routine must be supplied by the user as an assembly language subroutine or a routine from the FORTRAN-80 library.
2. CHAIN and COMMON

The CHAIN and COMMON statements are not implemented on the compiler. They will generate a fatal error.

The CHAIN and COMMON statements will be implemented in a future release of the BASIC compiler. However, their implementation will be different from the BASIC-80 interpreter's version. The COMMON statement will be similar to FORTRAN's COMMON statement.
3. DEFINT/SNG/DBL/STR

The compiler does not "execute" DEFxxx statements: it reacts to the static occurrence of these statements. regardless of the order in which program lines are executed. A DEFxxx statement takes effect as soon as its line is encountered. Once the type has been defined for a given variable, it remains in effect until the end of the program or until a different DEFxxx statement with that variable takes effect.
4. USRn Functions

USRn functions are significantly different from the interpreter versions. Tine argument to the USRn function is ignored and an integer result is returned in the HL registers. It is recommended that USRn functions be replaced by the CALL statement.
5. DIM and ERASE

The DIM statement is similar to the DEFxxx statement in that it is scanned rather than executed. That is, DIM takes effect when its line is encountered. If the default dimension (10) has already been established for an arpay variable and that variable is later encountered in a DIM statement, a "Redimensioned array" error resulis.

There is no ERASE statement in the compiler, so arrays cannot be erased and redimensioned. An ERASE statement will produce a fatal error.

Also note that the values of the subscripts in a DIM statement must be integer constants; they may not be variables, arithmetic expressions, or floating point values. For example,

DIMA1(1)
DIM A1 (3+4)
are both illegal.
6. END

During execution of a compiled program, an END statement closes files and returns control to the operating system. The compiler assumes an END statement at the end of the program, so "running off the end" produces proper program termination.
7. ON ERROR GOTO/RESUME <line number>

If a program contains ON ERROR GOTO and RESUME <line number> statements, the /E compilation switch must be used. If the RESUME NEXT, RESUME, or RESUME 0 form is used, the $/ X$ switch must also be included. See the BASIC Compiler User's Manual for an explanation of these switches.
8. REM

REM statements or remarks starting with a single quotation mark do not take up time or space during execution, and so may be used as freely as desired.
9. STOP

The STOP statement is identical to the END statement. Open files are closed and control returns to the operating system.
10. TRON/TROFF

In order to use TRON/TROFF, the /D compilation switch must be used. Otherwise, TRON and TROFF are ignored and a warning message is generated.
11. FOR/NEXT and WHILE/WEND

FOR/NEXT and WHILE/WEND loops must be statically nested.
12. Double Precision Transcendental Functions

SIN, COS, TAN, SQR, LOG. and EXP return double precision results if given a double precision argument. Exponentiation with double precision operands will return a double precision result.

## L. 3 EXPRESSION EVALUATION

During expression evaluation, the operands of each operator are converted to the same type, that of the most precise operand. For example.

$$
Q R=J \%-A!+Q \#
$$

causes $\mathrm{J} \%$ to be converted to single precision and added to A!. This result is converted to double precision and added to Q $\begin{aligned} & \text { \# }\end{aligned}$
The Compiler is more limited than the interpreter in handling numeric overflow. For example, when run on the interpreter the following program

```
1%=20000
J%=20000
K%=-30000
M%=1%+J%-K%
```

yields 10000 for $\mathrm{M} \%$. That is, it adds $\mathrm{I} \%$ to $\mathrm{J} \%$ and, because the number is too large, it converts the result into a floating point number. $\mathrm{K} \%$ is then converted to floating point and subtracted. The result of 10000 is found, and is converted back to integer and saved as $\mathrm{M} \%$.
The compiler, however, must make type conversion decisions during compilation. It cannot defer until the actual values are known. Thus, the compiler would generate code to perform the entire operation in integer mode. If the ID switch were set, the error would be detected. Otherwise, an incorrect answer would be produced.

In order to produce optimum efficiency in the compiled program, the compiler may perform any number of valid algebraic transformations before generating the code. For example, the program

```
1%=20000
J%=-18000
K%=20000
M%=1%+J%+K%
```

could produce an incorrect result when run. If the compiler actually performs the arithmetic in the order shown, no overflow occurs. However, if the compiler performs $\mathrm{I} \%+\mathrm{K} \%$ first and then adds $\mathrm{J} \%$, an overflow will occur. The compiler follows the rules for operator precedence and parenthetic modification of such precedence, but no other guarantee of evaluation order can be made.

## L. 4 INTEGER VARIABLES .

In order to produce the fastest and most compact object code possible, make maximum use of integer variables. For example, this program

$$
\begin{aligned}
& \text { FOR I=1 TO } 10 \\
& \text { A(I)=0 } \\
& \text { NEXT I }
\end{aligned}
$$

can execute approximately 30 times faster by simply substituting " $\mid \%$ " for " $l$ ". It is especially advantageous to use integer variables to compute array subscripts. The generated code is significantly faster and more compact.

## APPENDIX M

## ASCII CHARACTER CODES

| ASCII <br> Code | Character | ASCII <br> Code | Character | ASCII Code | Character |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 000 | NUL | 043 | + | 086 | $V$ |
| 001 | SOH | 044 | , | 087 | W |
| 002 | STX | 045 | - | 088 | X |
| 003 | ETX | 046 | . | 089 | Y |
| 004 | EOT | 047 | 1 | 090 | $Z$ |
| 005 | ENQ | 048 | 0 | 091 | [ |
| 006 | ACK | 049 | 1 | 092 | , |
| 007 | BEL | 050 | 2 | 093 | 1 |
| 008 | BS | 051 | 3 | 094 | $\wedge$ |
| 009 | HT | 052 | 4 | 095 | < |
| 010 | LF | 053 | 5 | 096 |  |
| 014 | VT | 054 | 6 | 097 | a |
| 012 | FF | 055 | 7 | 098 | b |
| 013 | CR | 056 | 8 | 099 | c |
| 014 | SO | 057 | 9 | 100 | d |
| 015 | SI | 058 | : | 101 | e |
| 016 | DLE | 059 | ; | 102 | f |
| 017 | DC1 | 060 | $<$ | 103 | 9 |
| 018 | DC2 | 061 | $=$ | 104 | h |
| 019 | DC3 | 062 | $>$ | 105 | i |
| 020 | DC4 | 063 | ? | 106 | j |
| 021 | NAK | 064 | @ | 107 | k |
| 022 | SYN | 065 | A | 108 | 1 |
| 023 | ETB | 066 | B | 109 | m |
| 024 | CAN | 067 | C | 110 | $n$ |
| 025 | EM | 068 | D | 111 | $\bigcirc$ |
| 026 | SUB | 069 | $E$ | 112 | 0 |
| 027 | ESCAPE | 070 | F | 113 | 9 |
| 028 | FS | 071 | G | 114 | $r$ |
| 029 | GS | 072 | H | 115 | s |
| 030 | RS | 073 | 1 | 116 | $t$ |
| 039 | US | 074 | $J$ | 117 | $u$ |
| 032 | SPACE | 075 | K | 118 | V |
| 033 | ! | 076 | L | 119 | w |
| 034 | $\cdots$ | 077 | M | 120 | $\times$ |
| 035 | \# | 078 | N | 121 | $y$ |
| 036 | \$ | 079 | 0 | 122 | $z$ |
| 037 | $\%$ | 080 | P | 123 | 1 |
| 038 | \& | 081 | Q | 124 | 1 |
| 039 | , | 082 | R | 125 | 1 |
| 040 | 1 | 083 | S | 126 | - |
| 041 | ) | 084 | T | 127 | DEL |
| 042 | * | 085 | U |  |  |

ASCll codes are in decimal
LF=Line Feed, $F F=$ Form Feed, $C R=$ Carriage Return, $D E L=$ Rubout

## INDEX

| ABS | 3-1 |
| :---: | :---: |
| Addition | 1-10 |
| ALL | 2-4, 2-9 |
| Arctangent | 3-3 |
| Array variables | 1-7, 2-9, 2-18, L-4 |
| Arrays | 1-7 |
| ASC | 3-2 |
| ASCII codes | 3-2, 3-4. M-1 |
| ASCII format | 2-4. 2-49. 2-77. L-1 |
| Assembly language subroutines | 2-3, 2-16. 2-59. 3-21, 3-23, C-1, L-2 |
| ATN | 3-3. L-3 |
| AUTO | 1-2, 2-2 |
| Boolean operators | 1-12 |
| CALL | 2-3, C-5, L-2 |
| Carriage return | 1-3. 2-36, 2-41 to 2-42. 2-83 to 2-85 |
| Cassette tape | 2-7.2-11 |
| CDBL | 3-3 |
| CHAIN | 2-4, 2-9, L-2 |
| Character set | 1-3 |
| CHRS | 3-4 |
| CINT | 3-4 |
| CLEAR | 2-6, A-1 |
| CLOAD | 2-7 |
| CLOAD* | 2-7 |
| CLOAD? | 2-7 |
| CLOSE | 2-8, B-3, B-8 |
| Command level | 1-1 |
| COMMON | 2-4, 2-9, L-2 |
| Concatenation | 1-14 |
| Constants | 1-4 |
| CONT | 2-10, 2-41 |
| Control characters | 1-4 |
| Control-A | 2-22 |
| COS | 3-5, L-3 |
| CP/M | 2-46, 2-49, 2-76 to 2-77, B-1, D-1 |
| CSAVE | 2-11 |
| CSAVE* | 2-11 |
| CSNG | 3-5 |
| CVD | 3-6, B-8 |
| CVI | 3-6, B-8 |
| CVS | 3-6, B-8 |
| DATA | 2-12, 2-74 |
| DEFFN | 2-13 |
| DEF USR | 2-16, 3-21 |
| DEFDBL | 1-7, 2-15, L-2 |
| DEFINT | 1-7, 2-15. L-2 |
| DEFSNG | 1-7, 2-15, L-2 |
| DEFSTR ................ | 1-7, 2-15, L-2 |

DEINT ................................................................................ C-1
DELETE ................................................................................ $1-2,2-4,2-17$
DIM ......................................................................................... . . . 2 .18, L-2
Direct mode ................................................................... 1-1, 2-34, 2-54, L-1
Division .................................................................................... 1-10
Double precision .................................................................. . 1-5, 2-15, 2-60, 3-3, A-1, L-3
EDIT
Edit mode ................................................................................. 1-4, 2-19, L-1
1-2, 2-19

EOF .................................................................................. 3-6. B-3. B-5. D-4
ERASE ...........................................................................................2-24, L-2
ERL ......................................................................................... 2 . 2-25
ERR ...........................................................................................25
ERROR ................................................................................ 2-26
Error codes .......................................................................... . . . $1-15,2$ 25 to 2-26, J-1
Error messages ...........................................................................15, J-1, L-2
Errop trapping ................................................................... 2-25 to 2-26, 2-54, 2-75, B-7, L-3
Escape ........................................................................ 1-3, 2-19
EXP ................................................................................. . 3-7, L-3
Exponentiation ..................................................................1-10 10 1-11, 3-7, L-3
Expressions ........................................................................ 1-9
FIELD ................................................................................. 2-28, 8-8
FILES .................................................................................. D-3
FIX ................................................................................... 3-7
FOR . . . NEXT ................................................................... 2-29. A-1, L-3
FRCINT ................................................................................. C-1, C-4, D-4
FRE ........................................................................................ 3-8
Functions ....................................................................... 1-14, 2-13. 3-1, K-1
GET .............................................................................. 2-28. 2-31, B-8. D-4. A-3
GIVABF ......................................................................... C-1 to C-2
GOSUB .............................................................................. 2-32
GOTO .................................................................................. . . 2 .32 to 2-33
HEXS .................................................................................... 3-8
Hexadecimal ..................................................................... 1 1-5, 3-8
IF... GOTO ........................................................................ 2-34
IF . . . THEN ........................................................................ . . 2 2-25, 2-34
IF . . . THEN . . .ELSE ................................................................. 2-34
Indirect mode ............................................................................ 1-1
INP ........................................................................................ 3-9
INPUT .................................................................................. 2-10.
INPUTS ................................................................................ 3-9
INPUT\# ............................................................................. . . . . 2 .38. A-3, B-3
INSTR ............................................................................................. 3-10
INT .................................................................................. 3-7, 3-10
Integer .............................................................................. 3-4, 3-7, 3-10
Integer division ......................................................................... 1 .10
Interrupts ................................................................................ C-7
KILL ................................................................................ 2-39, B-2
LEFTS ........................................................................................... 3-11
LEN
3-11
LET
2-28, 2-40, B-9

| Line feed | 1-2. 2-36, 2-41 to 2-42, 2-84 to 2-85, L-1 |
| :---: | :---: |
| LINE INPUT | 2-41 |
| LINE INPUT\# | 2-42, A-3, B-3 |
| Line numbers | 1-1 to 1-2, 2-2. 2-73, L-2 |
| Line printer. | 2-45. 2-47, 2-83, 3-13, A-2 |
| -nes ..... | 1-1, L-1 |
| LIST | 1-2, 2-43 |
| LLIST | 2-45 |
| LOAD | 2-46, 2-77. B-1 |
| LOC | 3-12. B-3, B-5. B-8 |
| LOF | D-4 |
| LOG | 3-12, L-3 |
| Logical operators | 1-12 |
| Loops | 2-29, 2-82 |
| LPOS | 2-83, 3-13 |
| LPRINT | 2-47, 2-83 |
| LPRINT USING | 2-47 |
| LSET | 2-48, B-8 |
| MAKINT | C-1, C-4, D-4 |
| MBASIC | D-1 |
| MERGE | 2-4, 2-49, B-2 |
| MIDS | 2-50, 3-13, l-1 |
| MKD\$ | 3-14, B-8 |
| MKIS | 3-14, B-8 |
| MKSS | 3-14. B-8 |
| MOD operator | 1-10 |
| Modulus arithmetic | 1-10 |
| Multiplication | 1-10 |
| NAME | 2-51 |
| Negation | 1-10 |
| NEW | 2-8, 2-52 |
| NULL | 2-53 |
| Numeric constants | 1-4 |
| Numeric variables | $1-7$ |
| OCT\$ | 3-14 |
| Octal | 1-5, 3-14 |
| ON ERROR GOTO | 2-54, L-3 |
| ON . . . GOSUB | 2-55 |
| ON . . . GOTO | 2-55 |
| OPEN | 2-8, 2-28, 2-56, B-3, B-8 |
| Operators | 1-9, 1-11 to 1-14, L-4 |
| OPTION BASE | 2-57 |
| OUT | 2-58 |
| Overflow | 1-11, 3-7, 3-21, A-1, L-4 |
| Overlay | 2-4 |
| Paper tape | 2-53 |
| PEEK | 2-59, 3-15 |
| POKE | 2-59, 3-15 |
| POS | 2-83, 3-15 |
| PRINT | 2-60, A-1 |


| PRINT USING | 2-62. A-2 |
| :---: | :---: |
| PRINT\# | 2-66, A-3, B-3 |
| PRINT\# USING | 2-66, A-3, B-5. B-5 |
| Protected files | 2-77, A-2, B-2 |
| PUT | 2-28, 2-68, B-8 |
| Random files | $\begin{aligned} & 2-28,2-31,2-39,2-48,2-56,2-68,3-12, \\ & 3-14, \text { A-3, B-7, D-4 } \end{aligned}$ |
| Random numbers | 2-69. 3-16 |
| RANDOMIZE | 2-69. 3-16. A-1 |
| READ | 2-70, 2-74 |
| Relational operators | 1-11 |
| REM | 2-72, L-3 |
| RENUM | 2-4, 2-25, 2-73 |
| RESET | D-3 |
| RESTORE | $2-74$ |
| RESUME | 2-75. L-3 |
| RETURN | 2-32 |
| RIGHTS | $3 \cdot 16$ |
| RND | 2-69, 3-16, A-1 |
| RSET | 2-48, B-8 |
| Rubout | 1-3, 1-15, 2-20 |
| RUN | 2-76 to 2-77, B-2 |
| SAVE | 2-46, 2-76 to 2-77, B-1 |
| Sequential files | $\begin{aligned} & 2-38 \text { to } 2-39.2-42,2-56,2-66.2-85.3-6, \\ & 3-12, B-3 \end{aligned}$ |
| SGN | 3-17 |
| SIN | 3-17, L-3 |
| Single precision | 1-5, 2-15, 2-60, 3-5, A-1 |
| SPACES | $3-18$ |
| SPC | 3-18 |
| SQR | 3-19, L-3 |
| STOP | 2-10, 2-23, 2-32, 2-78. L-3 |
| STR\$ | 3-19 |
| String constants | 1-4 |
| String functions | $\begin{aligned} & 3-6,3-10 \text { to } 3-11,3-13,3-16.3-19,3-22 \text {. } \\ & 1-1 \end{aligned}$ |
| String operators | 1-14 |
| String space .... | 2-6, 3-8, A-1, B-9 |
| String variables | 1-7, 2-15, 2-41 to 2-42 |
| STRING\$ | 3-20 |
| Subroutines | 2-3, 2-32, 2-55, C-1 |
| Subscripts | 1-7, 2-18, 2-57, L-3 |
| Subtraction | 1-10 |
| SWAP | 2-79 |
| SYSTEM | D-4 |
| TAB | 3-20 |
| Tab | 1-3 to 1-4 |
| TAN | 3-21, L-3 |
| TROFF | 2-80. L-3 |
| TRON .. | 2-80, L-3 |


| USR | 2-16, 3-21, C-1 |
| :---: | :---: |
| USRLOC | C-2 |
| VAL | 3-22 |
| Variables | 1-6, L-4 |
| VARPTR | 3-23 |
| WAIT | 2-81 |
| WEND | 2-82, L-3 |
| WHILE | 2-82, L-3 |
| WIDTH | 2-83. A-2 |
| WIDTH LPRINT | 2-83. A-2 |
| WRITE | 2-84 |
| WRITE\# | 2-85, A-3, B-3 |

